On two conjectures of Sierpiński concerning the arithmetic functions σ and ϕ

Kevin Ford
Sergei Konyagin*

Dedicated to Professor Andrzej Schinzel on the occasion of his 60th birthday.

Abstract

Let $\sigma(n)$ denote the sum of the positive divisors of n. In this note it is shown that for any positive integer k, there is a number m for which the equation $\sigma(x)=m$ has exactly k solutions, settling a conjecture of Sierpiński. Additionally, it is shown that for every positive even k, there is a number m for which the equation $\phi(x)=m$ has exactly k solutions, where ϕ is Euler's function.

1991 Mathematics Subject Classification: Primary 11A25, 11N64; Secondary 11N36.

1. Introduction

For each natural number m, let $A(m)$ denote the number of solutions of $\phi(x)=m$ and let $B(m)$ denote the number of solutions of $\sigma(x)=m$. Here $\phi(x)$ is Euler's function and $\sigma(x)$ is the sum of divisors function. About 40 years ago, Sierpiński made two conjectures about the possible values of $A(m)$ and $B(m)$ (see [S1], [E,p. 12] and Conjectures C_{14} and C_{15} of [S2]).

Conjecture 1 (Sierpiński). For each $k \geqslant 2$, there is a number m with $A(m)=k$.
Conjecture 2 (Sierpiński). For each $k \geqslant 1$, there is a number m with $B(m)=k$.
An older conjecture of Carmichael [C1,C2] states that $A(m)$ can never equal 1. Carmichael's Conjecture remains unproven, however it is known that a counterexample m must exceed $10^{10^{10}}$ (c.f. Theorem 6 and section 7 of [F1]).

Both of Sierpiński's conjectures were deduced by Schinzel [S1] as a consequence of his Hypothesis H [SS].

Schinzel's Hypothesis H. Suppose $f_{1}(n), \ldots, f_{k}(n)$ are irreducible, integer valued polynomials (for integral n) with positive leading coefficients. Also suppose

[^0]that for every integer $q \geqslant 2$, there is an integer n for which q does not divide $f_{1}(n) \cdots f_{k}(n)$. Then the numbers $f_{1}(n), \ldots, f_{k}(n)$ are simultaneously prime for infinitely many positive integers n.

By an inductive approach, the first author [F1,Lemma 7.1] has shown that Conjectures 1 and 2 follow from Dickson's Prime k-tuples Conjecture [D], which is the special case of Hypothesis H when each $f_{i}(n)$ is linear.

Although Hypothesis H has not been proved in even the simplest case of two linear polynomials (generalized twin primes), sieve methods have shown the conclusion to hold if the numbers $f_{1}(n), \ldots, f_{k}(n)$ are allowed to be primes or "almost primes" (non-primes with few prime factors). See [HR] for specifics. Taking a new approach we utilize these almost primes to prove Conjecture 2 unconditionally. The same method is applicable to Conjecture 1, but falls short of a complete proof because of the (probable) non-existence of a number with $A(m)=1$. The fact that $B(1)=1$ is crucial to the proof of Conjecture 2.

Theorem 1. For every $k \geqslant 1$, there is a number m with $B(m)=k$.
Theorem 2. Suppose r is a positive integer and $A(m)=k$. Then there is a number l for which $A(l m)=r k$.

Corollary 3. If $A(m)=k$ is known to be solvable for $2 \leqslant k \leqslant C$, then $A(m)=k$ has a solution for every k divisible by a prime $\leqslant C$. In particular, $A(m)=k$ is solvable for all even k.

The first author has succeeded in proving Conjecture 1 for all $k \geqslant 2$ by combining the inductive approach in [F1] with the theory of almost primes. The details are very complex and will appear in a forthcoming paper [F2].

2. Preliminary lemmas

Let $\omega(n)$ denote the number of distinct prime factors of n, let $P^{-}(n)$ denote the smallest prime factor of n, and let $[x]$ denote the greatest integer $\leqslant x$. The first two lemmas provide the construction of numbers m with a desired value of $A(m)$ or $B(m)$.

Lemma 1. Suppose $A(m)=k, r \geqslant 2, n \geqslant 2$ and $p_{i, j}(i=1, \ldots, r ; j=1, \ldots, n)$ are primes larger than $2^{r} m+1$. For each i, let $q_{i}=p_{i, 2} p_{i, 3} \cdots p_{i, n}$, and let t be the product of all primes $p_{i, j}$. Suppose further that
(i) $2 p_{i, 1} q_{j}+1$ is prime whenever $i=1, j=1$ or $j=i$,
(ii) no $p_{i, j}$ equals any of the primes listed in (i),
(iii) except for the numbers listed in (i), for each $d_{1} \mid t$ with $d_{1}>1$ and $d_{2} \mid 2^{r-1} m$, $2 d_{1} d_{2}+1$ is composite.

Then $A\left(2^{r} t m\right)=r k$.
Proof. Suppose that $\phi(x)=2^{r} t m$. No $p_{i, j}$ may divide x, for otherwise $p_{i, j}-1 \mid 2^{r} t m$, which is impossible by conditions (ii), (iii) and the fact that each $p_{i, j}>2^{r} m+1$. Therefore, each $p_{i, j}$ divides a number $s_{i, j}-1$, where $s_{i, j}$ is a prime divisor of x. Therefore, $s_{i, j}=d p_{i, j}+1$, where $d \mid 2^{r} m t / p_{i, j}$ and $2 \mid d$. By condition (iii), $s_{i, j}$ must be one of the primes listed in (i) and by condition (ii), each prime $s_{i, j}$ divides x to the first power only. By (i), there are r choices for $s_{1,1}$ and once $s_{1,1}$ is chosen the other primes $s_{i, j}$ are uniquely determined. For each choice,

$$
\phi\left(s_{1,1} s_{2,1} \cdots s_{r, 1}\right)=2^{r} t
$$

and thus $\phi\left(x /\left(s_{1,1} \cdots s_{r, 1}\right)\right)=m$, which has exactly k solutions.
Lemma 2. Suppose $r \geqslant 2, n \geqslant 2$ and $p_{i, j}(i=1, \ldots, r ; j=1, \ldots, n)$ are primes larger than $2^{r}+1$. For each i, let $q_{i}=p_{i, 2} p_{i, 3} \cdots p_{i, n}$, and let t be the product of all primes $p_{i, j}$. Suppose further that
(i) $2 p_{i} q_{j}-1$ is prime whenever $i=1, j=1$ or $j=i$,
(ii) $\sigma\left(\pi^{b}\right) \nmid 2^{r} t$ for every prime π and integer $b \geqslant 2$ with $\sigma\left(\pi^{b}\right)>2^{r}$,
(iii) except for the numbers listed in (i), for each $d_{1} \mid t$ with $d_{1}>1$ and $d_{2} \mid 2^{r-1}$, $2 d_{1} d_{2}-1$ is composite.
Then $B\left(2^{r} t\right)=r$.
Proof. Suppose that $\sigma(x)=2^{r} t$. Each $p_{i, j}$ divides a number $\sigma\left(s_{i, j}^{b}\right)$, where $s_{i, j}^{b}$ is a prime power divisor of x. Condition (ii) implies $b=1$, so $s_{i, j}=d p_{i, j}-1$, where d is an even divisor of $2^{r} t / p_{i, j}$. By condition (iii), $s_{i, j}$ must be one of the primes listed in (i). There are r choices for $s_{1,1}$ and once $s_{1,1}$ is chosen the other primes $s_{i, j}$ are uniquely determined. For each choice,

$$
\sigma\left(s_{1,1} s_{2,1} \cdots s_{r, 1}\right)=2^{r} t
$$

which forces $x=s_{1,1} \cdots s_{r, 1}$.
To show such sets of primes $\left(p_{i, j}\right)$ exist, the first tool we require is a lower bound on the density of primes s for which $\frac{s-1}{2}$ (or $\frac{s+1}{2}$) is an almost prime.

Lemma 3. Let $a=1$ or $a=-1$. For some positive α and x sufficiently large, there are $\gg x / \log ^{2} x$ primes $x / 2<s \leqslant x$ for which $s=2 u+a$, u has at least 2 prime factors and every prime factor of u exceeds x^{α}.

Proof. This follows from the linear sieve and the Bombieri-Vinogradov prime number theorem (Lemma 3.3 of $[\mathrm{HR}]$) to bound the error terms. By Theorem 8.4 of [HR], we have

$$
\#\left\{x / 2<s \leqslant x: s, \frac{1}{2}(s-a) \text { both prime }\right\} \leqslant(4+o(1)) \frac{x}{\log ^{2} x}
$$

and for $x \geqslant x_{0}(\alpha)$
$\#\left\{x / 2<s \leqslant x: s\right.$ prime,$\left.P^{-}\left(\frac{1}{2}(s-a)\right)>x^{\alpha}\right\} \geqslant\left(\frac{e^{-\gamma}}{\alpha} f(1 /(2 \alpha))+o(1)\right) \frac{x}{\log ^{2} x}$,
where f is the usual lower bound sieve function and γ is the Euler-Mascheroni constant. Taking $\alpha=\frac{1}{8}$ and noting that $f(4)=\frac{1}{2} e^{\gamma} \log 3$, the number of primes $x / 2<s \leqslant x$ for which $u=\frac{1}{2}(s-a)$ contains at least 2 prime factors and all prime factors of u exceed x^{α} is at least $0.39 x / \log ^{2} x$ for large x.

In the argument below it is critical that the numbers $\frac{1}{2}(s-a)$ have at least two prime factors. This may be the first application of lower bound sieve results where almost primes are desired and primes are not.

Lemma 4. Suppose $g \geqslant 1$, and $a_{i}, b_{i}(i=1, \ldots, g)$ are integers satisfying

$$
E:=\prod_{i=1}^{g} a_{i} \prod_{1 \leqslant r<s \leqslant g}\left(a_{r} b_{s}-a_{s} b_{r}\right) \neq 0
$$

Let $\rho(p)$ denote the number of solutions of

$$
\prod_{i=1}^{g}\left(a_{i} n+b_{i}\right) \equiv 0 \quad(\bmod p)
$$

and suppose $\rho(p)<p$ for every prime p. If $\log E \ll \log z$, then the number of n with $z<n \leqslant 2 z$ and $P^{-}\left(a_{i} n+b_{i}\right)>z^{\alpha}$ for $i=1, \ldots, g$ is

$$
\begin{aligned}
& <_{g, \alpha} \frac{z}{\log ^{g} z} \prod_{p}\left(1-\frac{\rho(p)-1}{p-1}\right)\left(1-\frac{1}{p}\right)^{1-g} \\
& <_{g, \alpha} \frac{z}{\log ^{g} z}\left(\frac{E}{\phi(E)}\right)^{g}<_{g, \alpha} \frac{z(\log \log z)^{g}}{\log ^{g} z} .
\end{aligned}
$$

Proof. This is essentially Theorem 5.7 of [HR]. The second part follows from the fact that $\rho(p)=g$ unless $p \mid E$, in which case $\rho(p)<g$.

Lemma 5. For any real $\beta>0$,

$$
\sum_{k \leqslant x}\left(\frac{k}{\phi(k)}\right)^{\beta}<_{\beta} x .
$$

Proof. Write $(k / \phi(k))^{\beta}=\sum_{d \mid k} g(d)$, where g is the multiplicative function satisfying $g(p)=(p /(p-1))^{\beta}-1$ for primes p and $g\left(p^{a}\right)=0$ when $a \geqslant 2$. Then

$$
\sum_{k \leqslant x}(k / \phi(k))^{\beta}=\sum_{d \leqslant x} g(d)[x / d] \leqslant x \prod_{p}(1+g(p) / p)=c(\beta) x .
$$

3. The main argument

Fix $a=1$ or $a=-1$. The primes s counted in Lemma 3 have the property that $\omega\left(\frac{1}{2}(s-a)\right) \leqslant[1 / \alpha]$. Therefore, there exists a number $n(1 \leqslant n \leqslant[1 / \alpha]-1)$ and some pair y, z with $x / 16 \leqslant y z \leqslant x / 2, y>x^{\alpha}$ such that

$$
\#\left\{y<p \leqslant 2 y, z<q \leqslant 2 z: p, 2 p q+a \text { prime }, \omega(q)=n, P^{-}(q)>y\right\} \gg \frac{x}{\log ^{3} x}
$$

Denote by B the set of such pairs (p, q). From now on variables p, p_{i} will denote primes in $(y, 2 y]$ and variables q, q_{i} will denote numbers in $(z, 2 z]$ with n prime factors, each exceeding y. Implied constants in the following may depend on r, n or m.

Lemma 6. The number of $2 r$-tuples $\left(p_{1}, \ldots, q_{r}\right)$ with each $\left(p_{i}, q_{i}\right) \in B$ which satisfy condition (i) but fail condition (ii) or (iii) (referring either to Lemma 1 or Lemma 2 and writing $p_{i}=p_{1, i}$ and $\left.q_{i}=p_{i, 2} \cdots p_{i, n}\right)$ is

$$
\ll \frac{x^{r}(\log \log x)^{r n+4 r-1}}{(\log x)^{5 r-1}} .
$$

Proof. We first count those $2 r$-tuples satisfying (i) but failing (ii). When $a=1$, all of the $2 r$-tuples satisfy condition (ii) in Lemma 1 , since $2 p_{i, 1} q_{j}+1 \gg x$ and each $p_{i, j} \ll x^{1-\alpha}$. If condition (ii) of Lemma 2 fails, then $y / 2 \leqslant \pi^{b} \leqslant 2^{r} t \leqslant(2 x)^{r}$. Therefore, the number of $2 r$-tuples not satisfying (ii) is bounded above by

$$
\sum_{y / 2 \leqslant \pi^{b} \leqslant(2 x)^{r}} \frac{(2 x)^{r}}{\pi^{b}} \ll x^{r} \sum_{b=2}^{\infty} \sum_{\pi \geqslant(y / 2)^{1 / b}} \frac{1}{\pi^{b}} \ll x^{r-\alpha / 2}
$$

Counting the $2 r$-tuples satisfying (i) but failing (iii) is a straightforward application of Lemma 4. First fix d_{2} and the set of pairs (i, j) for which $p_{i, j} \mid d_{1}$ (there are finitely many such choices). Each of the numbers listed in (i) and (iii) are linear in all the variables $p_{i, j}$, thus applying Lemma 4 successively with the variables $p_{i, j}$ (in some order) gives the desired upper bound on their number.

We illustrate this process in the case $r=3, n=2, d_{1}=p_{2,2} p_{2,3} p_{3,3}, d_{2}$ arbitrary. Fix distinct primes $p_{1,2}, p_{1,3}, p_{2,2}, p_{2,3}, p_{3,2}$. Since $p_{3,2} \ll z / y$, by Lemma 4 the number of primes $p_{3,3}$ such that $2 d_{2} p_{2,2} p_{2,3} p_{3,3}+a$ is prime is

$$
\ll \frac{z(\log \log x)^{2}}{p_{3,2} \log ^{2} x}
$$

Given $p_{3,3}$ (i.e. q_{1}, q_{2}, q_{3} are fixed), the number of p_{1} with $2 p_{1} q_{j}+a$ prime $(j=$ $1,2,3)$ is $O\left(y(\log \log x)^{4} / \log ^{4} x\right)$, the number of p_{2} with $2 p_{2} q_{j}+a$ prime $(j=1,2)$ is $O\left(y(\log \log x)^{3} / \log ^{3} x\right)$ and the number of p_{3} with $2 p_{3} q_{j}+a$ prime $(j=1,3)$ is $O\left(y(\log \log x)^{3} / \log ^{3} x\right)$. Multiplying these together and summing over all $p_{i, j}$ $(i=1,2,3 ; j=2,3)$ gives an upper bound of $O\left(x^{3}(\log \log x)^{13} / \log ^{14} x\right) 6$-tuples.

Lemma 7. The number of $2 r$-tuples $\left(p_{1}, \ldots, q_{r}\right)$, with each $\left(p_{i}, q_{i}\right) \in B$, satisfying condition (i) of Lemma 1 or Lemma 2 is

$$
\gg \frac{x^{r}}{(\log x)^{5 r-2}} .
$$

Proof. Denote by P_{j} a generic j-tuple $\left(p_{1}, \ldots, p_{j}\right)$ with p_{1}, \ldots, p_{j} distinct. Let $N_{j}(q)$ be the number of P_{j} such that $2 p_{i} q+a$ is prime for each i, and let $M_{j}\left(P_{j}\right)$ be the number of q such that $2 p_{i} q+a$ is prime for each i.

By the definition of B, we have

$$
\sum_{q} N_{1}(q)=|B| \gg x / \log ^{3} x
$$

Therefore, by Hölder's inequality,

$$
\begin{align*}
S:=\sum_{P_{r}} M_{r}\left(P_{r}\right) & =\sum_{q} N_{r}(q)=r!\sum_{q}\binom{N_{1}(q)}{r} \\
& \gg \sum_{N_{1}(q) \geqslant r+1} N_{1}(q)^{r} \gg(z / \log z)^{1-r}\left(\sum_{N_{1}(q) \geqslant r+1} N_{1}(q)\right)^{r} \tag{1}\\
& \gg \frac{x^{r}}{z^{r-1}(\log x)^{2 r+1}} .
\end{align*}
$$

Lemma 4 gives

$$
\begin{equation*}
M_{r}\left(P_{r}\right) \ll L\left(P_{r}\right) \frac{z}{(\log x)^{r+1}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
L\left(P_{j}\right):=\prod_{1 \leqslant g<h \leqslant j} \frac{\left|p_{g}-p_{h}\right|}{\phi\left(\left|p_{g}-p_{h}\right|\right)} \tag{3}
\end{equation*}
$$

This follows from the fact that $r+1 \geqslant \rho(p) \geqslant r+1-k_{p}$, where k_{p} is the number of pairs (i, j) with $i>j$ and $\left|p_{i}-p_{j}\right|$ divisible by p. Let A be the number of p, so that $A \asymp y / \log x$. Let $R(k ; x)$ denote the number of primes $p \leqslant x-k$ for which $p+k$ is also prime. By Lemma 4, when $k \leqslant x / 2$ we have

$$
R(k ; x) \ll \frac{x}{\log ^{2} x} \frac{k}{\phi(k)}
$$

Lemma 5 now gives

$$
\sum_{y<p_{1}<p_{2} \leqslant 2 y} L\left(p_{1}, p_{2}\right)^{\beta} \leqslant \sum_{k \leqslant y}\left(\frac{k}{\phi(k)}\right)^{\beta} R(k ; 2 y) \ll_{\beta} A^{2} .
$$

Let $H=\binom{j}{2}$. Together with (3) and Hölder's inequality, we have

$$
\begin{equation*}
j!\binom{A}{j} \leqslant \sum_{P_{j}} L\left(P_{j}\right) \leqslant \prod_{1 \leqslant g<h \leqslant j}\left(A^{j-2} \sum_{p_{g}, p_{h}} L\left(p_{g}, p_{h}\right)^{H}\right)^{1 / H} \ll_{j} A^{j} \tag{4}
\end{equation*}
$$

and similarly

$$
\sum_{P_{j}} L^{2}\left(P_{j}\right) \lll j A_{j}
$$

The upper bounds

$$
S \ll \frac{z A^{r}}{(\log x)^{r+1}}
$$

and

$$
\begin{equation*}
\sum_{P_{r}} M_{r}^{2}\left(P_{r}\right) \ll S^{2} A^{-r} \tag{5}
\end{equation*}
$$

now follow from (1), (2) and (4). Choose $\delta_{0}>0$ small enough so that

$$
r!\binom{A}{r} \frac{\delta_{0} z}{(\log x)^{r+1}} \leqslant \frac{S}{2}
$$

and let P denote the set of P_{r} with

$$
M_{r}\left(P_{r}\right) \geqslant \frac{\delta_{0} z}{(\log x)^{r+1}}
$$

By (5) and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
S & \leqslant\left(r!\binom{A}{r}-|P|\right) \frac{\delta_{0}}{(\log x)^{r+1}}+\sum_{P_{r} \in P} M_{r}\left(P_{r}\right) \\
& \leqslant \frac{S}{2}+O\left(|P|^{1 / 2} S A^{-r / 2}\right),
\end{aligned}
$$

whence

$$
\begin{equation*}
|P| \gg A^{r} \tag{6}
\end{equation*}
$$

For each P_{j}, let $J_{j}\left(P_{j}\right)$ denote the number of P_{r-j} with $P_{r-j} \cap P_{j}=\emptyset$ and $\left(P_{j}, P_{r-j}\right) \in P$. Let δ_{1} and δ_{2} be sufficiently small positive constants, depending on r, but not on A. Let R denote the set of p such that $J_{1}(p) \geqslant \delta_{1} A^{r-1}$. By (6), if δ_{1} is small enough then $|R| \gg A$. If $p \in R$, denote by $T(p)$ the set of p^{\prime} such that $J_{2}\left(p, p^{\prime}\right) \geqslant \delta_{2} A^{r-2}$. If δ_{2} is small enough, $|T(p)| \gg A$ uniformly in p. Choose δ_{2} so that $\delta_{2}<\frac{1}{2 r} \delta_{1}$. We first show that

$$
\begin{equation*}
\sum_{\substack{p_{1} \in R \\ p_{1}, \ldots, p_{r} \in T\left(p_{1}\right) \\\left(p_{1}, \ldots, p_{r}\right) \in P}} M_{r}\left(p_{1}, p_{2}, \ldots, p_{r}\right) \gg A^{r} \frac{z}{(\log x)^{r+1}} . \tag{7}
\end{equation*}
$$

The functions M_{j} are symmetric in all variables, hence

$$
\begin{aligned}
\#\left\{\left(p_{1}, \cdots, p_{r}\right) \in P\right. & \left.: p_{1} \in R ; p_{2}, \ldots, p_{r} \in T\left(p_{1}\right)\right\} \\
& \geqslant \sum_{p_{1} \in R} J_{1}\left(p_{1}\right)-r \sum_{\substack{p_{1} \in R \\
p_{2} \notin T\left(p_{1}\right)}} J_{2}\left(p_{1}, p_{2}\right) \\
& \geqslant|R| \delta_{1} A^{r-1}-r|R| A\left(\delta_{2} A^{r-2}\right) \\
& \geqslant \frac{1}{2}|R| \delta_{1} A^{r-1} \gg A^{r} .
\end{aligned}
$$

Together with the definition of P, this proves (7). Next, if $p_{1} \in R$ and $p_{2} \in T\left(p_{1}\right)$, then by Lemma 4,

$$
\begin{aligned}
J_{2}\left(p_{1}, p_{2}\right) \delta_{0} \frac{z}{(\log x)^{r+1}} & \leqslant \sum_{p_{3}, \ldots, p_{r}} M_{r}\left(p_{1}, \ldots, p_{r}\right) \\
& =\sum_{q \text { counted in } M_{2}\left(p_{1}, p_{2}\right)} N_{r-2}(q) \\
& \ll\left(\frac{y}{\log ^{2} x}\right)^{r-2} M_{2}\left(p_{1}, p_{2}\right),
\end{aligned}
$$

whence

$$
\begin{equation*}
M_{2}\left(p_{1}, p_{2}\right) \gg \frac{z}{\log ^{3} x} . \tag{8}
\end{equation*}
$$

Let E denote the number of $2 r$-tuples $\left(p_{1}, \ldots, q_{r}\right)$ with $\operatorname{gcd}\left(q_{i}, q_{j}\right)>1$ for some $i \neq j$. Using (7) and (8), the number of $2 r$-tuples satisfying condition (i) of either Lemma 1 or Lemma 2 is at least

$$
\begin{aligned}
\sum_{p_{1}, \cdots, p_{r}} & M_{r}\left(p_{1}, \ldots, p_{r}\right) \prod_{j=2}^{r} M_{2}\left(p_{1}, p_{j}\right)-E \\
& \geqslant \sum_{\substack{p_{1} \in R \\
p_{2}, \ldots, p_{r} \in T\left(p_{1}\right)}} M_{r}\left(p_{1}, \ldots, p_{r}\right) \prod_{j=2}^{r} M_{2}\left(p_{1}, p_{j}\right)-E \\
& \gg\left(\frac{z}{\log ^{3} x}\right)^{r-1} \sum_{\substack{p_{1} \in R \\
p_{2}, \ldots, p_{r} \in T\left(p_{1}\right)}} M_{r}\left(p_{1}, \ldots, p_{r}\right)-E \\
& \gg \frac{x^{r}}{(\log x)^{5 r-2}}-E .
\end{aligned}
$$

Trivially $E \ll \frac{x^{r}}{y}$ and the lemma follows.
For every $r \geqslant 2$, Lemmas 6 and 7 guarantee the existence of a set of primes $\left(p_{i, j}\right)$ satisfying the hypotheses of Lemma 1 or Lemma 2. This completes the proof of Theorems 1 and 2.

The methods of this paper also apply to a wide class of multiplicative arithmetic functions. An exposition of some results will appear in section 9 of [F1].

References

[C1] Carmichael, R. D., On Euler's ϕ-function. Bull. Amer. Math. Soc. 13 (1907), 241-243.
[C2] - Note on Euler's ϕ-function. Bull. Amer. Math. Soc. 28 (1922), 109-110.
[D] Dickson, L. E., A new extension of Dirichlet's theorem on prime numbers. Messenger of Math. 33 (1904), 155-161.
[E] Erdös, P, Some remarks on Euler's ϕ-function. Acta Arith. 4 (1958), 10-19.
[F1] Ford, K, The distribution of totients. The Ramanujan J. 2, nos. 1-2 (1998), 67-151.
[F2] - The number of solutions of $\phi(x)=m$ Annals of Math. (to appear)
[HR] Halberstam, H., Richert, H.-E., Sieve Methods Academic Press, London 1974.
[SS] Schinzel, A.,Sierpiński, W., Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208.
[S1] Schinzel, A., Sur l'equation $\phi(x)=m$, Elem. Math. 11 (1956), 75-78.
[S2] - Remarks on the paper "Sur certaines hypothèses concernant les nombres premiers", Acta Arith. 7 (1961/62), 1-8.

[^0]: * The second author was supported by NSF grant DMS 9304580.

