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1 Introduction

It is known (e.g. [3] and [11]), and we will revisit this argument shortly, that there are infinitely
many positive integers n such that φ(n)σ(n) = ¤1. Here, we look at such positive integers n.
Clearly, n = 1 has the property. Suppose that n > 1 and write its prime factorization as

eq:1eq:1 (1.1) n =
k

∏

i=1

pαi

i .

Then

eq:2eq:2 (1.2)
φ(n)σ(n)

n2
=

k
∏

i=1

(

1 − 1

pαi+1
i

)

.

Thus, if n > 1 and φ(n)σ(n) = m2 for some positive integer m, then m < n, so we can write
m = n − a for some positive integer a. In this paper, we look at the positive integers a arising in
this way. First, we fix such a number a and study the set

Na := {n : n > a and φ(n)σ(n) = (n − a)2}.
It is easy to see that each n ∈ Na has the same parity as a. Our first result shows that Na is a
finite set.

thm:1 Theorem 1. All elements n in Na have ω(n) > 1 and n 6 2a3.

We conjecture that Theorem 1 is best possible. Indeed, if p is prime and 2p2 −1 is also prime, then
for n = p(2p2 − 1), σ(n)φ(n) = (n − p)2 and n ∼ 2p3. It is conjectured that there are infinitely
many such primes (this is a special case of Schinzel’s Hypothesis H).

Next, we look at the set

A = {a > 1 : Na 6= ∅}
= {2, 3, 6, 7, 8, 9, 11, 13, 17, 19, 23, 24, 26, 28, 32, 35, 37, 40, 41, 43, 45, 47, 53, . . .}.

Date: October 26, 2012.
1We use ¤ to denote the square of a positive integer
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Clearly, A is infinite because on the one hand there are infinitely many n such that φ(n)σ(n) = ¤,
while on the other hand for each a the set Na is finite by Theorem 1. Our next result gives a lower
bound for A(x) = A ∩ [1, x].

thm:3 Theorem 2. The estimate #A(x) > x1/8+o(1) holds as x → ∞.

In light of the examples given above (n = p(2p2 − 1)) and the Bateman-Horn conjectures [4], it is
likely that A(x) ≫ x/ log2 x.

Throughout the paper, we use the Landau symbols O and o and the Vinogradov symbols ≫, ≪
and ≍ with their usual meaning. We recall that A = O(B), A ≪ B and B ≫ A are all equivalent
and mean that the inequality |A| 6 cB holds with some positive constant c. Further, A ≍ B means
that both estimates A ≪ B and B ≪ A hold, while A = o(B) means that A/B → 0. The symbols
p, q always represent primes.

2 Background on solutions of Pell-type equations

Let d > 1 be a positive integer which is not a square. For k > 1, let (Xk, Yk) be the kth positive
solution of the Pell equation X2 − dY 2 = 1. Recall that

Xk +
√

dYk = (X1 +
√

dY1)
k holds for all k = 1, 2, . . .

We shall use some basic facts about the sequences (Xk)k>1 such as relations of the type

Xm+n = XmXn + dYmYn for all positive integers m, n,

as well as the fact that Xm | Xn whenever m | n and n/m is odd. We need the following easy result
concerning the indices k such that Xk is an odd prime power.

lem:111 Lemma 3. If Xk = pα for some odd prime p and positive integer α, then k is a power of 2.

Proof. Suppose that k is not a power of 2. Let h > 3 be an odd divisor of k and put r = k/h. Since
Xr | Xk, we have Xr = pβ for some integer 1 6 β < α. From

Xk +
√

dYk = (Xr +
√

dYr)
h,

we get

eq:binomeq:binom (2.1) Xk =

(h−1)/2
∑

i=0

(

h

2i + 1

)

X2i+1
r (X2

r − 1)(h−1)/2−i.

In particular,

pα = Xk > Xh
r = (pβ)h = phβ ,

therefore β < α/h. Let j be the largest integer with pjβ | h. If j 6 h− 2, we then reduce the above

equation (2.1) modulo p(j+2)β. Upon observing that j + 2 6 h, therefore (j + 2)β 6 hβ < α, we

infer that p(j+2)β | Xk. Thus,

eq:uwithbeq:uwithb (2.2) 0 ≡
∑

06i6j/2

(

h

2i + 1

)

p(2i+1)β(p2β − 1)(h−1)/2−i (mod p(j+2)β).

We now show that p(j+2)β |
(

h
2i+1

)

p(2i+1)β for all 1 6 i 6 j/2. Indeed, let pλ‖2i + 1. Since

2i + 1 6 p2i−1, it follows that λ 6 2i − 1. Using Kummer’s theorem concerning the power of a
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prime dividing a binomial coefficient and denoting by νp(m) the exponent of p in the factorization
of m, we then have

νp

((

h

2i + 1

))

> νp(h) − νp(2i + 1) > 2jβ − λ,

so

(j + 2)β 6 νp

((

h

2i + 1

))

+ λ + 2β 6 νp

((

h

2i + 1

))

+ (2i − 1) + 2β 6 νp

((

h

2i + 1

)

p(2i+1)β

)

.

Thus, p(j+2)β |
(

h
2i+1

)

p(2i+1)β . The congruence (2.2) then implies

0 ≡ hpβ(p2β − 1)(h−1)/2 (mod p(j+2)β),

which implies p(j+1)β | h, a contradiction. Hence, j > h − 1, so h is divisible by ph−1 > h, a
contradiction. ¤

Let a > 1 and b > 1 be coprime square free integers such that the Diophantine equation

aU2 − bV 2 = 1

has a positive integer solution (U, V ). It is then well-known that it has infinitely many positive
integer solutions (U, V ). Further, putting (U1, V1) for the smallest such solution, all solutions of
the above equation are of the form (U2j+1, V2j+1) for some j > 0, where

√
aU2j+1 +

√
bV2j+1 = γ2j+1 where γ =

√
aU1 +

√
bV1.

Furthermore, if we put

γ2j = U2j +
√

abV2j for j > 1,

then the pairs (X, Y ) = (U2j , V2j) for j > 1 form all the positive integer solutions of the Pell
equation X2 − (ab)Y 2 = 1. All these facts follow from Theorem 3 in [13]. We need the following
result which is similar to Lemma 3.

lem:112 Lemma 4. With the above notation, let a = p be an odd prime and let h be an odd positive integer.

If Uh = pα for some α > 0, then h = 1 or (a, b, h) = (3, 2, 3).

Proof. If α = 0, then there is nothing to prove. So, assume that α > 0 and h > 1. Write h = rs
with 1 6 r < h. Since Ur | Uh, it follows that Ur = pβ , where 0 6 β < α. Write

binom2binom2 (2.3) pα = Uh =

(s−1)/2
∑

i=0

(

s

2i + 1

)

U2i+1
r pi(bV 2

r )(s−1)/2−i.

Let pj‖s and assume that j < α − β. As in the previous proof, for i > 1 let pλ‖2i + 1. Observe
that λ 6 i and in fact λ 6 i − 1 except when p = 3 and i = 1. Then

νp

((

s

2i + 1

))

> νp(s) − νp(2i + 1) = j − λ,

therefore

νp

((

h

2i + 1

)

U2i+1
r pi

)

> j + (2i + 1)β + i − λ.

If λ 6 i− 1 or if β > 0, the right hand side above is at least j +1+β. Thus, in (2.3) all terms with
i > 1 are divisible by pj+1+β. This implies

0 ≡ spβ(bV 2
1 )(s−1)/2 (mod pj+1+β),
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so pj+1 | s, a contradiction. Thus, we have j > α − β and hence Uh/Ur | s. This is impossible, as
(2.3) implies

Uh

Ur
> p(s−1)/2

> s.

It remains to treat the exceptional case i = 1, β = 0, p = 3 for which U1 = 1, b = 2, V1 = 1. Note
that in this case U3 = 9 = 32. No other odd numbers h give Uh = 3α, however. To see this,
apply (2.3) with r = 1, s = h and deduce that 3|h. If h > 3, we apply the above argument with
r = 3, s = h/3 and β = 2, and deduce a contradiction as before. ¤

The proofs of Lemma 3 and 4 can be simplified by invoking the Primitive Divisor Theorem for
Lucas and Lehmer sequences (see [6], [15] and [5]). We gave the current proofs in order to make
the proof of Theorem 1 self–contained.

3 The proof of Theorem 1

Suppose that n ∈ Na, let k = ω(n) and factor n canonically as n = pα1
1 · · · pαk

k . If k = 1, then
n = pα1

1 and

φ(n)σ(n) = pα1−1
1 (pα1+1

1 − 1) = ¤.

Since the two factors pα1+1
1 − 1 and pα1−1

1 are coprime and their product is a square, it follows that

each one of them is a square. So, α1 − 1 = 2β1 is even, and pα1+1
1 − 1 = p2β1+2

1 − 1 = ¤, which is
impossible because there are no two consecutive perfect squares. Hence, k > 2.

We apply the AGM–inequality to the right side of (1.2) and get

(

1 − 1

k

(

k
∑

i=1

1

pαi+1
i

))2

>

(

1 − 1

k

(

k
∑

i=1

1

pαi+1
i

))k

>

k
∏

i=1

(

1 − 1

pαi+1
i

)

=
σ(n)φ(n)

n2
=

(

1 − a

n

)2
.

Taking square roots and rearranging gives

eq:4eq:4 (3.1) ak > n

(

k
∑

i=1

1

pαi+1
i

)

.

Applying again the AGM–inequality to the right–hand side of (3.1), we get

ak > kn
k

∏

i=1

p
−(αi+1)/k
i = k

k
∏

i=1

p
αi−(αi+1)/k
i .

If k > 3, then since αi − (αi + 1)/k > αi − (αi + 1)/3 = (2αi − 1)/3 > αi/3 for all i = 1, . . . , k, we
get that

a >

k
∏

i=1

p
αi/3
i = n1/3.

Thus, if k > 3, then n 6 a3.
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Next, suppose k = 2 and rewrite equation (1.2) as

2
∏

i=1

pαi−1
i (pαi+1

i − 1) = (
2

∏

i=1

pαi

i − a)2.

If αi > 2, then pαi−1
i | a2, therefore pi | a, and then pαi

i | a3. In particular, if α1 > 1 and α2 > 1,
then n = pα1

1 pα2
2 |a3, so that n 6 a3. The next case is when α1 = 1 and α2 > 2. If α2 = 2, then p2|a,

hence p1 < p2 6 a and n = p1p
2
2 < a3. If α2 > 3, (3.1) implies that 2a > n/p2

1 > pα2−1
2 > n1/2, so

that n 6 4a2 6 2a3 (recall that a = 1 is not possible).

The final case is when k = 2 and α2 = 1. Assume first that p1 = 2. Then p2
2 − 1 ≡ 0 (mod 8),

therefore 2α1+2 | φ(n)σ(n) = (2α1n− a)2, showing that 2α1+1 | a2. Thus, by equation (3.1), we get

n 6 2α1+1(2a) 6 2a3.

From now on, we suppose that p1 is odd. We break the argument into two subcases depending on
whether α1 is odd or even. First, suppose α1 is odd and write α1 = 2β − 1, where β > 1. Here we

have pβ−1
1 |a, so we may write a = pβ−1

1 b for a positive integer b. Then our equation becomes

(p2β
1 − 1)(p2

2 − 1) = (pβ
1p2 − b)2.

Thus, there exists a square free number d and integers u, v such that p2β
1 −1 = du2 and p2

2−1 = dv2.
Let (X1, Y1) be the minimal positive solution to the Pell equation X2−dY 2 = 1 and let (Xj , Yj) be

its jth solution. Since pβ
1 = Xℓ and p2 = Xm for some positive integers ℓ, m, it follows by Lemma

3 that both ℓ and m are powers of 2. Further, since

(XℓXm − b)2 = (pβ
1p2 − a)2 = (p2β

1 − 1)(p2
2 − 1) = (dYℓYm)2,

it follows that
b = XℓXm − dYℓYm = X|m−ℓ|.

Suppose that β 6 2. If m < ℓ then pβ
1 = Xℓ = 2X2

ℓ/2 − 1 > 2p2
2 − 1 > p2

2, a contradiction. Hence,

m > 2ℓ and pβ
1 = Xℓ 6 b, which implies a = pβ−1

1 b > p2β−1
1 . We also have p2 = Xm = 2X2

m/2 − 1 <

2b2 6 2a2 and consequently

n = p2β−1
1 p2 < 2a3.

Now suppose β > 3. If m > 2ℓ, then we get b > Xk = pβ
1 as before. Otherwise, m 6 ℓ/2, 2|ℓ and

b > Xℓ/2 =

√

Xℓ + 1

2
>

√

pβ
1

2
.

In both cases,

a = pβ−1
1 b 6

p
β−1+(β/2)
1 √

2
,

hence p1 6 (a
√

2)2/(3β−2). Using (3.1), we get p2 6 2ap1 6 2a(a
√

2)2/(3β−2) and we conclude that

n 6 2a(a
√

2)
4β

3β−2 = 2
1+ 2β

3β−2 a
7β−2
3β−2 < 4a19/7

6 2a3,

the final inequality holding for a > 12 (for a 6 11, a quick search yields no solutions in the interval

[2a3, 4a19/7]). This concludes the proof when α1 is odd.

Finally, suppose α1 is even and write α1 = 2β. Then pβ
1 | a and p1 | p2

2 − 1. Writing a = pβ
1a1, we

get

(p2β+1
1 − 1)

(

p2
2 − 1

p1

)

= (pβ
1p2 − a1)

2.



6 KEVIN BROUGHAN, KEVIN FORD, AND FLORIAN LUCA

In particular, there exists a square free number d and integers u and v such that

p2β+1
1 − 1 = du2 and p2

2 − 1 = p1dv2.

If d = 1, then the first equation above becomes p2β+1
1 − u2 = 1, which has no solutions by known

results on Catalan’s equation (this particular case of Catalan’s equation was solved by Lebesque in

[12] more than 160 years ago). Thus, d > 1. Putting x = pβ
1 and y = p2, we get

p1x
2 − du2 = 1;

y2 − (p1d)v2 = 1.

With the notation from the previous section, let γ = U1
√

p1 + V1

√
d and δ = U1

√
p1 −V1

√
d. Then

pβ
1 = Uℓ and p2 = Um

for some positive integers ℓ odd and m even. By Lemma 4, we have ℓ = 1 or (p, x) = (3, 9). In the
latter case, using (3.1) gives n = 34p2 6 34(6a) 6 2a3 for a > 16 (for a 6 15, there are no solutions
n ∈ [2a3, 486a]). Now suppose ℓ = 1. By Lemma 3, m is a power of 2 and we get

a1 = pβ
1p2 − duv =

(

γ + δ

2
√

p1

) (

γm + δm

2

)

−
(

γ − δ

2

) (

γm − δm

2
√

p1

)

=
γm−1 + δm−1

2
√

p1

= Um−1 > U1 = pβ
1 .

Hence, a > p2β
1 and we conclude that

n = p2β
1 p2 6 ap2 6 a(2ap1) 6 2a2+1/(2β)

6 2a5/2.

4 The proof of Theorem 2

4.1 Preliminary results

For an integer m we use P (m) for the largest prime factor of m with the convention that P (0) =
P (±1) = 1. If m satisfies P (m) 6 y, then m is called y–smooth.

We follow [11]. Given a polynomial F (X) ∈ Z[X] put

πF (x, y) = #{p 6 x : P (F (p)) 6 y}.
The following result appears in [9].

lem:11 Lemma 5. Let g be the largest of the degrees of the irreducible factors of F (X) and let k be the

number of irreducible factors of F (X) of degree g. Assume that F (0) 6= 0 if g = k = 1, and let ε be

any positive number. Then the estimate

πF (x, y) ≍ x

log x

holds for all sufficiently large x provided that y > xg+ε−1/2k.

In the remaining of this section, G is a finite abelian group. Let n(G) be length of the longest
sequence of elements of G (not necessarily distinct) such that no nonempty subsequence of it has
a zero sum. The following result is from [10].

lem:12 Lemma 6. If m is the maximal order of an element of G, then

n(G) < m(1 + log(#G/m)).
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The following result is from [1].

lem:13 Lemma 7. Assume that r > k > n = n(G) be integers. Then any sequence of r elements of G
contains at least

(

r
k

)

/
(

r
n

)

distinct subsequences of length between k − n and k having zero sum.

4.2 The proof of Theorem 2

Let x be large, ε ∈ (0, 1/5), x1 = x1/2−ε and

y =
log x1

log log x1
.

Let t = π(y) and G = (Z/2Z)t, so by Lemma 6,

eq:nGeq:nG (4.1) n(G) < 2(1 + (π(y) − 1) log 2).

Let u = (3/4 + ε)−1. Applying Lemma 5 to the polynomial F (X) = X2 − 1 for which g = 1 and
k = 2, we get that

πF (yu, y) ≫ yu

log yu
.

In particular, by the Prime Number Theorem, there exists c1 ∈ (0, 1) such that if we put

S1(y) = {p : c1y
u < p 6 yu, P (p2 − 1) 6 y}, then

#S1(y) ≫ yu

log yu
, for x > x0.eq:S1eq:S1 (4.2)

Applying the above argument with with y replaced by c1y, we also get that that if we put

S2(y) = S1(c1y) = {p : cu+1
1 yu < p 6 cu

1yu, P (p2 − 1) 6 c1y}, then

#S2(y) ≫ (c1y)u

log((c1y)u)
≫ yu

log yu
, for x > x0.eq:S2 (4.3)

We put

k =

⌊

log x1

log yu

⌋

.

The argument from the proof of Theorem 1.1 in [11] shows that if we put

F(y) = {ℓ < x1 : φ(ℓ)σ(ℓ) = ¤ and p ∈ S1(y) for all p | ℓ},
then

T = #F(y) = x
1−1/u+o(1)
1 > x1/8−ε

for large x. Now take

eq:Meq:M (4.4) M =

⌊

log x1

log(cu+1
1 yu)

⌋

+ n(G) + 2.

Note that

M ≪ log x1

log y
+ 2π(y) ≪ y,

so in particular 2M < #S2(y) for large x by inequality (4.3). Choose elements q1, . . . , q2M in S2(y)
and write q2

i − 1 = ai¤, where ai is square free and P (ai) 6 y for i = 1, . . . , 2M . We think of
ai as elements G where in the location corresponding to a prime p 6 y we assign the value 1 or
0 according to whether p divides ai or not. We apply Lemma 7 with r = 2M, k = M to deduce
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the existence of at least
(

2M
M

)

/
(

2M
n(G)

)

> 1 subsequences of length at most M and at least M −n(G)

with a zero sum. Fix one such subsequence {qi}i∈I and put

w =
∏

i∈I

qi.

Then φ(w)σ(w) = v2 for some integer v. Furthermore, since
⌊

log x1

log(cu+1
1 yu)

⌋

+ 2 6 #I 6 M 6

⌊

log x1

log(cu+1
1 yu)

⌋

+ n(G) + 2,

we get that

eq:largeeq:large (4.5) w > (cu+1
1 yu)#I

> (cu+1
1 yu)

—

log x1

log(cu+1
1 yu)

º

+2
> 2x1 > 2ℓ

for all ℓ ∈ F(y) when x > x0, and

w < (cu
1yu)

—

log x1

log(cu+1
1 yu)

º

+O(π(y))
= x

1+o(1)
1 < x1/2+ε

for all sufficiently large x, where we used the fact that (see (4.1)),

n(G) ≪ π(y) = o(y) = o

(

log x

log(cu+1
1 yu)

)

(x → ∞).

Now consider

N (y) = {wℓ : ℓ ∈ F(y)}.
Clearly, n < x1w < x for all n ∈ N (y). Let ℓ1, . . . , ℓT be all the elements of F(y). Let ni = ℓiw for
i = 1, . . . , T . Then

σ(ni)φ(ni) = (ni − ai)
2.

Clearly, ai < ni < x. Let us show that these ai’s are distinct. Put φ(ni)σ(ni) = m2
i for i = 1, . . . , T .

If ai = aj(= a) for some i 6= j, then

mi = ni − a and mj = nj − a,

so

eq:teq:t (4.6) mi − mj = ni − nj = (ℓi − ℓj)w.

Observe that w is built with primes p 6 cu
1yu < c1y

u and the numbers ℓs are built with primes
p > c1y

u for s = 1, 2, . . . , T , so gcd(ℓs, w) = 1. Hence, ms is a multiple of v for all s = 1, . . . , T .
Thus, the left-hand side in (4.6) is a multiple of v. Clearly,

v =
√

φ(w)σ(w) = w
∏

q|w

(

1 − 1

q2

)1/2

>
w

√

ζ(2)
>

w

2
> max{ℓi, ℓj} > |ℓi − ℓj |,

by inequality (4.5). Furthermore, v is divisible only by primes p < y, whereas w is divisible only by
primes q > cu+1

1 yu > y for x sufficiently large, so that gcd(v, w) = 1. Now equation (4.6) implies
that v|(ℓi − ℓj), hence ℓi = ℓj . So, a1, . . . , aT are distinct, therefore

#A(x) > T = #F(y) > x1/8−ε+o(1)

as x → ∞. Letting ε tend to zero, we obtain the desired estimate.

Remarks. If, as widely believed, for any ε > 0 we have πF (x, xε) ≫ x/ log x, then the above

argument implies that #A(x) > x1/2−o(1) as x → ∞.
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Mathématiques (1) 9 (1850), 178–181.
Nagell [13] T. Nagell, “On a special class of Diophantine equations of the second degree”, Ark. Mat. 3 (1954), 51–65.
Hand [14] J. Sándor, D. S. Mitrinović, B. Crstici, Handbook of number theory. I. Second printing of the 1996 original.

Springer, Dordrecht, 2006.
War [15] M. Ward, “The intrinsic divisors of Lehmer numbers”, Ann. Math. (2) 62 (1955), 230–236.

Department of Mathematics, University of Waikato, Private Bag 3105, Hamilton, New Zealand.

E-mail address: kab@waikato.ac.nz

Department of Mathematics, The University of Illinois at Urbana-Champaign Urbana, 1409 West

Green St., Champaign, IL 61801, USA.

E-mail address: ford@math.uiuc.edu
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