AN EXPLICIT SIEVE BOUND AND SMALL VALUES OF o(¢(m))

KEVIN FORD

ABSTRACT. We prove an explicit sieve upper bound based on the large sieve of
Montgomery and Vaughan [MV], and apply it to show that o(¢(m)) > m/39.4 for
all positive integers m.

1. INTRODUCTION

In 1973, Montgomery and Vaughan [MV] proved a weighted version of the large
sieve inequality which allowed them to prove a very simple version of the Brun-
Titchmarsh inequality, namely

2y
m(x +y;q,a) —m(x3¢,a) < ,
¢(q) log(y/q)
where 7(z;q,a) is the number of primes p < z, = a (mod ¢). Using the same

weighted large sieve, we prove a general explicit upper sieve bound for shifted
primes (numbers p — 1 for primes p).

Theorem 1. Let S be a set of primes containing 2. Let U(x) = U(x; S) be the
number of primes p < x with p — 1 composed only of primes in S. Let

Hw) = ] (1-1).

p<zT,pES p

Then, for z > 1,

x vz logt
V@) < 1y 1/1og2)” ”@:A — @)t

In §3 we apply Theorem 1 to a problem of Makowski and Schinzel [MS], who
asked if

o(d(m) _ 1

m ~ 9

(1.1)
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2 KEVIN FORD

for all integers m. Here o(m) is the sum of the positive divisors of m and ¢ is
Euler’s totient function. Equality holds when m = 2. Moreover, Makowski and
Schinzel [MS] show that

hmine 7O L1

m— oo m 2 934 _ 4
In 1989, Pomerance [P] showed that inf w > (0. Here we prove a specific lower
bound.
Theorem 2. For all natural numbers m,

a(p(m)) 5 1
m 394

2. ExprriciT SIEVE BOUNDS

The object of this section is to prove Theorem 1, the main tool being the weitghed
large sieve inequality ([MV], Corollary 1). In what follows, p(n) will denote the
Mobius function, s(m) will denote the product of the distinct primes dividing m,
7(x) is the number of primes < z, and 7 = 0.57721566... denotes the Euler-
Mascheroni constant. For primes p, p®||n means p¢|n and p¢*! { n.

Lemma 2.1. We have
Z Z M = logz + ¢(z),
s(n)<x n<e

where c(x) = 1 for x > 6 and c(x) > 0.3 for z > 1.

Proof. For x < 65 this follows by a direct computation, where we use the fact that
c(x) is decreasing on each interval [k — 1, k). For larger x we use the inequality

6.927
(2.1) c(x) > 1.10689 — ===,
which we now prove. Let T'(z) = > )<, L. Let S(z) denote the sum of the

reciprocals of those m for which

II » I[ r<e

pellm,p<3  p¢|lm,p>3

Each such m may be written uniquely as m = ab with s(a)|6, (b,6) = 1 and
b< x/s(a). Thus

T(x ple 1
% o(d \Zx/d dzlﬁ‘ o(d Z éwz/(de) "
(b,6)=1
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We will now make use of the fact that

S L <logrty+ ), |B@I<) (@3>0,

n<x

SRS

which is an easy application of partial summation. Then

0m B D @)

d|6,e|6

log2 lo 3
=logx +v+ & g (

4 X
2 de
d|6 el6

g u
> logz + 1.10689 — - Z D Z _’

D|36 d|6 e|6
=ed

12
—log 2 + 1.10689 — —1 .
xXr

This immediately gives (2.1). O

We next require some explicit estimates of functions involving primes from the
paper of Rosser and Schoenfeld [RS].

Lemma 2.2 [RS, Theorem 7). For all x > 1,

- 1\ 1 ot 1
¢ (1+ . ) <H(1——)<e <1+ . )
log = log? z P log log” x

PLT

Lemma 2.3 [RS, Theorem 1, Corollary 1]. For all x > 17,

T ocna) < (143
ST X .
log log x 2logx

Proof of Theorem 1. For x > 2 and all S we have the upper bound

2 vz 2
IOgtdt—k%/ 1ogtdt< log l‘-|-1.922.
2

2.2 I(x) < <
(2:2) @< ] = : 16

First, U(z) = 0 when 1 < x < 2, so the theorem is trivial. When 2 < x < e!3,
Lemma 2.3 and (2.2) give

x 162
> >
I(x)(14+1/logz) =~ (14 1/logz)(1.922 + log® z)

so the theorem follows in this case.



4 KEVIN FORD

Next, suppose that x > e!?. Asin [MV], let Q = 1/22/3, so that Q > 543. Then
U(z) < m(Q) + V(x), where V(z) is the number of integers n < z such that n # 0
(mod ¢q) for each prime ¢ < @, and n Z 1 (mod q) for primes ¢ < @, g ¢ S. By the
weighted large sieve (Corollary 1 of [MV]), we have

(2.3) Ur) < 7(Q) + —,

where

L= (ht%yl/f(Q)HLp)’ w(p)Z{l Pes.

q<Q plq p= w(p) 2 pgs

Let ©(n) be the number of prime factors of n counted with multiplicity and let
7(n) be the number of positive divisors of n. Since 3¢Q/(2x) = q/Q,

D) G )

pla
pES

3 1 2£2(dz)
B 14 s(did2)/Q dyd

s(d1d2)<@Q

1 (d2)
> Z 1+ 5(did2)/Q didy

s(d1d2)<Q

> 1 1
s(d1d3d4)§Q 1 + S(d1d3d4)/Q d1d3d4
Here d; is composed only of primes in S, and dy = d3dy4 is composed only of primes
not in S. Let ds = dyds, so that there are no restrictions on the prime factors of

ds. Since s(dyds) < s(d4)s(ds), we have

1 1
sy aam <o L T 8(da)s(ds)/Q dads

Let

DI S Sl N (D S

dy
s(d)<x n<w s(da)<x

Since every d < z can be written uniquely in the form d = dydy,

(2.5) Z Z z) " f ().
5(d1)<x s(d4)<x
We next show that

26) r)i= Y (e sty = S gy >2)

s(d)<y n<y o(n)
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By partial summation

[V dg(t)
r(y)—/1_1+t/y
A dt c(t) 1Y ()
_/1 H+t/y) | 1+t/y 1+y/1 (y+t)2dt
y+1 c(y) Yoc(t)
:log( 5 >+ 5 +y/1 (y+t)2dt'

By Lemma 2.1, when y > 14, we have

1dt
r —lo —log2 + — +/
(y) —logy > —log ) e
>0

—log2 + ——
& y+6

For 2 < y < 14, we use the fact that r(y) — logy is decreasing on each interval
[k, k + 1) for integral k, then check that r(k) —log(k 4+ 1) > 0 for 2 < k < 13. This
proves (2.6). Writing ¢4 = s(d4), by (2.4), (2.5) and (2.6), we have

3 log(Q/s(d4))

— / log(Q/)df (1)

Q/2
f(Q/2)log2+/1 @dt

Q/2
> £(Q/2)log2 + 1 H(tig()

Q2 H(t)lo Q/2 c
=J"’(Q/2)log2+/1 (t)tl 8 at + 1 H(tz () 5
g Qmwdﬂﬂ@/?)( (Q/2) 1og2+/Q/20 )

Since @ > 20, Lemma 2.1 and a short computation give

Q/2 10 Q/2
/ @dt>/ @dH/ 2 log @ — 0.645.
1 t 1 t 1 t

0

Also,
vz o
/ H( )tl gt ot < H(C22/2) (log? vz —10g%(Q/2)) < <%10g6) H(Q/2)log Q.
Q/2
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Therefore, since g(Q/2) > log(Q/2) and since @ > 543,

L—1I(z) > H(Q/2){(1 +1log2 — Llog6)log @ — 0.645 — log” 2}
> 0.618H(Q) log Q,

whence by (2.3),
(2.7) L(z)—I(x) > 0.618H(Q) log Q.

By Lemma 2.2, when 1 <t < u,

(28) H(t)=H(u) [] (1 - %)1 < H(u)llzgg? (1 + 1og12u> (1 + 10;2t) .

peS
t<p<u

Taking u = /7 in (2.8) gives

VT log /T 1 1 ° H(t)logt
14+ —— 14 dt -l-/ ———dt
(\/E)/e t < log \/5) ( loth) ) t

(v tog v (1+ ﬁ) (1085 - i) + 1 og’2

—H
< H(v/x)log? \/x + 0.3702.

I(x)

N
e

Since \/x > 665, Lemma 2.2 gives H(y/x)log/x > 0.5484, and thus

I(x) < 1.104H (V) log? vz < 1.14H(Q) log Q log v/,

whence, by (2.7),
L>1I(x)(1+1.08/logz).

By (2.1), I(z) < 0.06331log? z and by Lemma 2.3, 7(Q) < 7(y/x) < 2.462\/z/log x.
Thus

1
v +0.156-282 v

1
I(x) <1+1.08/10g:1: \/5) < I(x)(1+1/logz) =

U(z) <

Remark. The term 1/logx in Theorem 1 can be increased with more work. Also,
a similar result holds if p — 1 is replaced by p + a for any fixed nonzero a.

3. SMALL VALUES OF o(¢(m)).

In proving Theorem 2, we may restrict our attention to square-free m, since if
p|m then
a(p(pm)) _ a(pp(m)) _ o(¢(m))

>
pm pm m
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For brevity, write

Throughout, the letter p, with or without subscripts, will always denote a prime.
We begin with

a+1l _

_ a(¢(m)) g(m) _ p
9m) = = m) -

Hp”

p* |I¢(m)

Denoting by e,(m) the exponent of p in the factorization of ¢(m), we have

p —1 ep(m p_l
(3.1) a(m) =[] L0~ ) T 2=

4 plm
We may assume that m has at least 30 distinct prime factors, otherwise if m has k
distinct prime factors with k& < 30 then 2¥~!|¢(m). Then (3.1) gives

2Om) 5 51— 91y 2) 5 51 9k II (1 - 1) > %

m m
» p

where the product is over the smallest k primes.

The factors 1 — p~1=¢ (™) in (3.1) will likely have product close to 1, so we first
make a reduction to this case. Let S(m) be the set of primes dividing ¢(m) (i.e.
the set of p with e,(m) > 1). With a set S of primes fixed, the minimum of a(m)
over all m with S(m) = S likely occurs for the “largest” such m.

Lemma 3.1. If m is squarefree and has at least 30 distinct prime factors, then

(3.2) H Pl p—l

pes peV(S)

where S = S(m) or S = S(m) U {3}, and V(S) is the set of primes p with p — 1

consisting only of primes is S.

Proof. 1t suffices to prove (3.2) with V'(S) replaced by a subset of V(5), since this
only makes the right side larger. Also, since m is divisible by an odd prime, S(m)
always contains 2. The basic idea is to multiply m by many primes p which do
not divide m, each with p — 1 having only prime factors in S(m). Then a(m’) will
not be much larger than a(m), but e,(m’) will be large for most small p € S(m),
making the factors 1 — p~1=°»(™) in (3.1) very close to 1.

We first claim that there is a number m’ which has the following properties:

(a) S(m’) = S(m),
(b) a(m) > 0.98527a(m’),
(c) For each prime 3 < p <97, p # 7, either e,(m') =0 or e,(m) > f.
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Here f, is the number of entries corresponding to p in Table 1. For prime p let
¢1(p) < g2(p) < --- be the primes with s(g;(p) — 1) = 2p. The first f, of these for
p < 100 are listed in Table 1. If e,(m) > 0, let @), denote the product of the primes
¢i(p) listed in the table which do not divide m. If there are none or if e,(m) = 0,

let @, = 1. We take
m' =m H Qp-

3<psI7
p#ET
Clearly (a) and (c) are satisfied with this choice of m’. To show (b), let my = m,
m1 = moQs, ma = M1Qs, ..., M2z = Ma2Qo7 = m'. Suppose 1 < j < 23, p = p;,
and e,(m) > 1. Since @, is divisible by at least f, — e,(m) of the primes ¢;(p) ,
(3.1) gives

a(mj_1) 1—2-1-exlmy1) 1 — p-l-ep(m) /I_QI (1-1/p")
(33) . 271782(m‘) , P&y
< 1 —9-1-ex(m;—1) ] _p_]-_ep(m) H (]‘ - 1/Qz(p))
ep(m)<i< fp

If e, (m ) > fp the above (empty) product is 1. When e,(m) = 0 then m;_y = m,,
so a(m;— ) (mj) Since ez(m) > 29 by hypothesis, applying (3.3) successively
for j = 1 2,...,23 gives

2<h< fp+l
3sps97
p#7

/ Io
a(m’) < (1—2730)1 H max (1—p ")™! H(1 —1/qi(p))
i=h

Here, if h = f, + 1 the (empty) product is 1, which takes care of the case where
ep(m) =0 or e,(m) > f,. A short computation now proves (b). In particular, the
maximum (over h) occurs at h = f, + 1 for p = 3, 5, 11, 29, 37, 67, 71, 73, 83; at
h=2for p=13, 17, 19, 23, 31, 41, 43, 47, 59, 61, 79, 89: at h = 3 for p = 53, 97
The next step is to take care of the prime p = 7. We show that there is a
number m” satisfying
(d) S(m”) = S5(m') or S(m") = S(m") U{3},
() a(m’) > (1 — 2-9)a(m"),
(f) Either ez(m”) =0 or ez(m”) > f7 with f; = 10.
If ez(m') = 0 we take m"” = m/. If e;(m') > 2, or ez(m’) = 1 and 29 f m, we
take m” = Q7m/’. Then by (3.1), when ez(m’) > 2 we obtain

12
1
alm’) 1-7" 1111—1Mz

max
a(m’) ~1—2730 3<h<f7+1

< (1 o 2—30)—1,
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P Set of first few ¢;(p)

3 7,13, 19, 37, 73, 97, 109, 163, 193, 433, 487, 577, 769, 1153, 1297, 1459,
2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 139969
5 11, 41, 101, 251, 401, 641, 1601, 4001, 16001, 25601, 40961, 62501, 160001
7 29, 113, 197, 449, 1373, 3137, 50177, 114689, 268913, 470597, 614657
11 | 23,89, 353, 1409, 2663, 30977, 170369, 495617, 5767169, 23068673

13 | 53, 677, 3329, 13313, 35153, 2768897, 13631489

17 | 137, 157217, 295937, 557057, 1336337

19 | 1217, 19457, 27437, 7023617, 9904397

23 | 47, 11777, 33857, 188417, 1557377, 4474457

29 | 59, 233, 929, 13457, 48779, 59393, 215297

31 | 7937, 15377, 264017, 458066417

37 | 149, 593, 5477, 9473, 37889, 151553, 202613, 1401857

41 | 83, 83969, 6885377, 8821889, 21495809

43 | 173, 2753, 176129, 1272113, 1893377

47 | 8837, 2262017,3322337, 36192257

53 | 107, 1697, 6946817, 46022657

59 | 1889, 55697, 120833, 410759

61 | 977, 249857, 56712564737

67 | 269, 4289, 17957, 287297, 1097729

71 | 569, 2273, 36353, 80657, 715823

73 | 293, 4673, 21317, 341057

79 | 317, 80897, 25563137

83 | 167, 2657

89 | 179, 11393, 45569

97 | 389, 1553, 1589249

TABLE 1. First few primes ¢;(p) for 3 < p < 97.

and when ez(m’) =1 and 29 f m we have

a(m"y 1-771-f7
a(m’) ~ 1—-2730

(49/48)(28/29) < 1.

The last case is when e7(m’) = 1 and 29|m, and we take

m'" = Q§Q7Q3,7m/7

where Q37 is the product of the 5 smallest primes ¢ with s(¢ — 1) = 42, namely
43,127,337,379,673, and Q4 is the product of the primes ¢;(3) which do not divide
m'.

If es(m') > 0, then eg(m’) > f3 and Q5 = 1 by the construction of m’. Thus

a(m” — 371/~ s
(m”) < (1 13_2_30) %H(l—l/Qi(7)) IT a-1/p) <.

i=2 p|Qz,7
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Otherwise, e3(m’) = 0 and

a(m//) 1 3 49 f3 Iz
o) < om0 - Ve [ vae) I a-vm <3

Putting together (a)-(f), we have
a(m) > 0.98527a(m’) > (1 —27%0)0.98527a(m”)

> 0.98526 H _1 H (1—p~1=F@) H Hp—l

pES(M”) 3<pLaT p=101 plm/’
1
>0.98348  [] _1 I1 P71
pes(my P T pevismnyy P

With Lemma 3.1 we have essentially reduced the problem to finding a lower bound
for infg E(S), where

(3.4) E(S):=> log(p/(p—1)) = Y log(p/(p—1)),

peS peV(S)

under the assumption that 2 € S.
To bound E(S5), first define

a(u) = —log(H Zlogp/ - 1)).

p<es
peS

Let W be the least real number > 10 for which
VW
H(t)logt
(3.5) / % dt = log W.

Such W exists because the left side is continuous in W and H(t) is constant for
large t. By (2.2),

(3.6) W > 7.872-10°, w = loglog W > 2.7649.

For x < W, I(x) < log x and so the right side in Theorem 1 is > (140(1))z/logx >
(14 o(1))7m(z), which is the trivial bound. Let

B =a(w—log2) =—log H(VIV).
We next show that
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By (3.5),
v logt e2w—B
e’ > H(V W)/ dt =

. t 8

which gives the lower bound in (3.7). Next, applying (2.8) together with (2.2) and
(3.6) gives

VW ST 66
e”<H(x/W)/ log W(1++) (1+%) P R LULL L
66 13 log” vW log” ¢ 1 t

4log? 66 + 1.922
“B(L+1/L)(L —1/L —1og66 + 1/log 66) + 08 DO ¥

16 o
< ev B <% _ 1.97) +4.51.

= log VW)

Therefore,

g €’ 1—-788e™" ev 3.37
B 200 C (g 220
4 1—451lew 4 —4.51

and the upper bound in (3.7) follows. Denote by P the largest prime in S, let
K =loglog P, and let

C' =) log(p/(p—1)) = lim o(u).

U— o
pES

Set § = 8¢~2*. By (2.8),

(3.8) ( )<{B+U—(w—log2)_|_§ (w—log2<u<C—B+w-—1log2)
. alu) <

C (u>C—-B+w-—1log2).

By partial summation, Theorem 1, (3.5) and the bound (¢t —1)(1+1/logt) > t, we
have

T :=— Z log(1 —1/p) = U(W)log(1 - 1/W) + /WOQ 2t

peV(S),p>W

Uw) = dt
[

w
-1
v—log 2
= ——W / / e?27(2) g dv.
w w —log 2

w w
UWw) [ e
-2 d
W +/ () v
-1
v—log 2
U(W / (/ & 2zfoz(z) dZ) dv
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First, consider the case where K < w —log2, i.e. B = C. Then a(u) = B for
u > w —log2, so by (3.7)

Tg—w+/ e (€w+%€_B(€2v_€2w))_1dU

W
¢ =+/8eB-v —1¢€(0,1).

_Uuw) B, arctang
= W + 8e £

Therefore,

t
E(S)> B+ vw) + Z log(1—1/p) — 863_“)%&115.
pEV(S),p<W

TS ol 1m = Y (os(1— 1/p) + 1/W)

cev(s
peEV(S),p<W Ppgé‘ﬂ

> 3" (log(1— 1/p) +1/W)

p<W

(3.9) 1 o 1 ~1
> 1 1
log W tog log W ( + log2 W)

1 B 1
log W log2 W

Z =y —w-+
Z =y —w.
Write e = \e®, so that A € (1/8,1/4) by (3.7). Then

arctan v8\ — 1
N

Now %ﬂm < 1— #a? for 0 < 2 < 1, so that E(S) > log A — v + 12.8\% — 9.6).
The right side is increasing in A, so that

E(S) >logA—~v— 8\

(3.10) E(S) > —log8 —~v—1.
In the case where K > w —log2, let n=C — B +w. By (3.9),
uw)
T<———~+4+101+ 1o,
W + 1+ 12

n v—log 2 -1
Il :/ el | ew +/ ez—B—l—w—logQ—é dz dv
w w—log 2

K —1
— / e? (ew + iew—B—(s(ev _ ew)) dU,

0o v—log 2 -1
I, = / e’ e + ie‘“_B_‘S(e77 —e¥) —|—/ e % dz dv.
n n—log 2
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Then

eW
dz
I, =4 B—w—|—5/
L= ew 2 —eY +4eBto
B—w+4d el —e¥
4e 10g(463+6 +1)
and

Iy =8¢ /00 dz
o 22+ 8eCHw 4 e21(2e70 — 1) — 2ewtn—0"

Again set A = eB7% € (1/8,1/4). Also define 3 = ¢“~8 > 1 and € = (8)\ —
2¢7%) /B +2¢7% — 1 > 0. The last inequality follows from 2¢~° — 1 > 0. Therefore,
by (3.9),

T p— < dy
ES)>2C—vy—-w 46)\10g(1+4>\5)+8/\/1 I

B—1 arctan /€
Ded ) TR

(3.11)

= logA+logﬁ—’y—465)\log(

By (3.7), A< 1(1-337e7) < 1(1-0) < e79/4,s0 4Xe < 1. In the region 1 < 3,

<AL 64 , the right side of (3.11) is minimum at 5 = 1, A = 5. Therefore (3.10)
follows in this case as well. Theorem 2 now follows from Lemma 3.1 and (3.10).

4. A HEURISTIC

From the preceding argument, we obtain the worst bound for E(S) when the
bound for a(u) given by (3.8) is sharp, i.e. when S consists of 2 plus all the primes
in an interval (y, z]. Thus, it is reasonable that taking S to be the set of primes
less than y, say, will produce small values of E(S). Then V = V(S) consists of
all primes p such that all prime factors of p — 1 are < y. Let ¥(x,y) denote the
number of integers n < z, all of whose prime factors are < y. Then we expect
that U(z) ~ ¥(x,y)/logz. It is known that in a wide range of z,y (see [HT]) that
U(z,y) ~ xp(u), where u = % and p is the Dickman-de Bruijn function defined
by

pluy =1 (0<u<l), p(u)zl—/lu@dv (u>1).
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Then, arguing heuristically,

p>y,pEV(S)
< Ut
= —U(y)log(1l —1/y) —/ 2 ®) dt
Yy
) / > p(logt/logy)
Y y tlogt
1 o0
- _/ plu) ,
log y 1 U
1
R —0.5219
log y

Thus, we expect exp E(S) > e79-5219 > 0.593 for such S when y is large.

Below we provide a table of rigorous lower bounds for e#(S) for various sets
S. The values of e®(%) listed are truncated in the third decimal place.

S B S B S eEW)
2 0.500 2,3,5 0.518 2,3,5,7 0.529
2,3 0.517 2,3,7 0.547 2,3,5,11  0.517
2,5 0.543 2,3,11  0.520 2,3,7,11  0.548
2,7 0.553 2,3,13 0.534 2,3,11,29 0.523
2,11  0.518 2,3,17 0.534 2,3,13,29 0.537
2,13 0.530 2,5,7 0.588 2,3,5,11,29 0.518
2,17  0.527 2,5,11 0.562 2,3,5,7,11 0.524
2,19 0.527 2,7,11 0.572 2,3,11,23,29 0.526
2,23 0.511 2,11,29 0.524 2,3,5,11,23 0.517
2,29 0.506 2,13,29 0.537

TABLE 2. Values of e£(5),

For certain classes of small S, it is easy to prove that eZ(5) > %

Lemma 4.1. For all primes p > 5,

Bz s L 1)
2 3p+1

Proof. For p = 5,7 this follows from Table 1. Suppose p > 11. If 2" 4+ 1 is prime,
then h is a power of 2. If p = 2 (mod 3), then m = 2Fp! 4 1 is divisible by 3
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whenever k + [ is odd, hence m is composite. Therefore

E(S) P > 22h 1
> 1~
B 11 ( 2kp1+1>

I+k odd
1>1,k>1

P 1
eXpy — Z T
2p—2 1iroaa 2P
1>1,k>1

v (w1
o 2P T3 -
s P (y_ 2F1
2p —2 3(p? —1)
1 1
> (1+ .
2 3p+ 1

When p =1 (mod 3), then 2¥p’ + 1 is divisible by 3 whenever k + [ is even, and a
similar argument gives a stronger bound. [J

Similarly, it can be shown that eZ({2:3:2}) > 0.51 for all prime p > 5.

One may attempt to disprove (1.1) by a certain explicit construction, adding
primes successively to S, where at each stage E(S) decreases. For example, F({2,3,5,11} <
E({2,3,5}). Also, if p is prime and the numbers kp+ 1 (k = 2, 6, 8, 12, 18, 32, 36,

48, 72, 96) are all prime (in particular p = 86 (mod 105)) then

ePU2:3p}) ¢ (E{23}) (1 B 0.034) .
p

However, it looks hopeless to disprove (1.1) in this way.
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