On the parity of the number of small divisors of n
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To Professor Helmut Maier on his sixtieth birthday

Abstract For a positive integer j we look at the parity of the number of divisors of
n that are at most j, proving that for large j, the count is even for most values of .

1 Introduction

Let 7(n) denote the number of positive divisors of the positive integer n. It is easy to
see that 7(n) is odd if and only if n is a square, so in the sense of asymptotic density,
7(n) is almost always even. In this note we consider the function 7;(n) =#{d | n :
d < j}, the number of positive divisors of n that are at most j. Here j is a positive
integer. Can we say that 7;(n) is usually even? Evidently not. This is patently false

Kevin Ford
Department of Mathematics, University of Illinois at Urbana—Champaign, Urbana, IL 61801,
USA e-mail: ford @math.uiuc.edu

Florian Luca
School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa
e-mail: florian.luca@wits.ac.za

Carl Pomerance
Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA e-mail:
carl.pomerance @dartmouth.edu

Jeffrey Shallit
School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada e-mail:
shallit@cs.uwaterloo.ca

Mathematics Subject Classification: 11N25, 20K01
Key Words: number of divisors



2 Kevin Ford, Florian Luca, Carl Pomerance, and Jeffrey Shallit

for j =1, and it is false for all odd numbers n when j < 2. Here’s another trivial
case. Say n is not a square and n/2 < j < n. Then 7;(n) is odd. In fact, if we list
out all of the divisors of n: 1 =d; <dp < -+ <dg(,) =nand choose j at random in
[1,n], when n is not a square, more than half of the time 7;(n) will be odd, since the
top interval [n/2,n) takes up half of the available values of j.
We are interested in the range 2 < j < /n, showing that 7;(n) tends to be even
here. Let
1 4loglog?2
log2

Theorem 1.1 Let N;(x) denote the number of integers n < x with t;(n) odd. Uni-
Sormly for 2 < j < +/x,

o=1- =0.08607....

X
Ni(x)=0 .
) ((logj)5/(1+6)(10g10g(2j))1.5/(1+5) )

The theorem implies that when j is large and fixed, 7;(n) is usually even as n varies.

It is interesting to look at this problem numerically. For a fixed number j, whether
7;(n) is even or odd depends solely on the value of ged(n,L;), where L; is the least
common multiple of the integers in [1, j]. That is, 7;(n) = 7;(gcd(n,L;)). Thus, the
set of integers n with 7j(n) odd is a union of residue classes modulo L;, so the
asymptotic density of the set of such n exists; it is N;(L;)/L;.

[ N;(L;) Ni(LH/L; ]
1 1 1 1

2 |2 1 05

3 6 3 05

4 12 7 0.5833333333
56 |60 33 0.55

7 |420 225 0.5357142857
8 (840 405 0.4821428571
9 [2520 1305 0.5178571429
10 2520 1235 0.4900793651
11,12 [27720 13635 0.4918831169
13 [360360 177705 0.4931318681
14 360360 170775 0.4739010989
15 [360360 170181 0.4722527473
16 [720720 359073 0.4982142857
17 |12252240 6106815 0.4984243697
18 [12252240 5919705 0.4831528765
19 [232792560 112887225  0.4849262580
20 232792560 109706355 0.4712622903
21 (232792560 110362725  0.4740818392
22 (232792560 107787735  0.4630205321
23,24 (5354228880 2496334995  0.4662361380
25 |26771144400 12782443905 0.4774709558
26 (26771144400 12538223775 0.4683484422
27 80313433200 37368330615 0.4652812005
28 (80313433200 36653106105 0.4563757848
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Our theorem implies that the right column approaches the limit 0 as j — oo
slightly faster, at the least, than (log j)~8/(1+9),

In the following table we consider some larger values of j but only via some
statistical experiments to approximate the density N;(L;)/L;. The experiments in-
volved taking the first 10* numbers following the kth prime, for k = 103,2 x
103,...,6 x 10°. The numbers in the table are actual counts of the number of odd val-
ues of 7;(n) among the 10* values of n. The numbers weakly suggest that N;(L;)/L;
decays to 0 like (log j)~® where 6 is slightly above 1/2. However, this too is mis-
leading. Indeed, we will show below in Theorem 2.3 that N(L;)/L; decays more
slowly than about 1/(log j)5. We do not resolve the issue of the “correct” exponent
on log j, but we do give a suggested plan for proving it is asymptotically &.

j 105 [2x10%|3 x10°[4 x 10°|5 x 10° |6 x 10°

100 |4131 (4121 |4077 |4099 |4123 (4109
200 |4061 |4107 [4174 4181 [4231 |4050
300 |3800 (3850 (3954 |3980 (4002 |3969
400 (3630 (3703 (3800 (3744 |3877 |3875
500 |3466 (3587 (3673 |3710 (3793 |3772
600 |3351 (3512 (3526 |3594 (3722 |3682
700 (3294 (3435 |3502 (3543 |3627 (3593
800 |3213 (3301 (3431 |3475 (3577 |3574
900 |2822 (3245 |3337 (3411 |3522 (3477
1000 |2358 (3197 |3248 3334 |3459 (3439

Throughout this note, the constants implied the by Landau symbol O and by
the Vinogradov symbols < and > are absolute. We also use the notation A =< B if
A < B < A. We also write a||b for positive integers a,b if a | b and ged(a,b/a) = 1.

2 Proof of Theorem 1.1

We begin with a criterion for 7;(n) to be even.

Lemma 2.1 Let j > 2. Suppose that there is a prime p||n and n has no divisor from
the interval (j, pj). Then T;(n) is even.

Proof. Suppose the hypotheses hold. Let
A={d|n:d<jptd}, B={d|n:d<j p|d),

so that {d | n : d < j} is the disjoint union of A and B. It suffices to show that #4 =
#B. For each d € A consider pd. Then pd | n and pd < pj. But by our hypothesis,
we must then have pd < j, so that pd € B. Thus, #A < #B. Now take d € B. We may
write d = pd’, where d’ | n, ptd’, and d' < j/p < j. Thus, d’ € A, which shows that
#B < #A. So, #A = #B, completing the proof.
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For real numbers x > z >y > 1, let H(x,y,z) denote the number of integers n < x
which have a divisor in the interval (y,z]. From the main theorem in Ford [3], we
have the following result.

Lemma 2.2 Suppose that y >2 and 2y <z < y> < x. Letu=logz/logy — 1, so that
7z =y Then,
H(x,y,2) < xu® (log(2/u)) 2.

Note that [3] states this result for y > 100 and x > 100,000, but by adjusting the
implicit constants, the result can be seen to hold in the larger range asserted.

We now proceed to the proof of the theorem. Let 2 < k < j be a parameter to be
chosen shortly. First note that the number of n < x for which there is no prime p < k
with p||n is O(x/logk). Indeed this follows from sieve methods, in particular [4,
Theorem 2.2]. Let u = logk/log j and z = kj = j!**. By Lemma 2.2, the number
of n < x which have a divisor in (j, z] is O(xu® (log(2/u))~3/?). Let us equate these
two O-estimates so as to fix our parameter k:

B NN -3/2
X —32_ [ logk 2log j
Togk xu® (log(2/u)) =x <logj log logk .

After a small calculation this leads to a reasonable choice for k being

k=exp ((logj)‘s/(“"s)(10g10g(2j))1~5/(1+5)) )
With this choice of £ we have that the number of n < x for which it is not the case
that both

e there is a prime p < k with p||n,
e nis free of divisors from the interval (j, k],

is O(x/logk). By Lemma 2.1, if both of these conditions hold, then 7;(n) is even.
With the choice of k given just above, this completes the proof.

It is clear that any integer n which has no prime factors in [1, j] also has 7;(n) = 1;
that is, 7;(n) is odd. Thus,

X
N; —
j(x) > 10gj7

using [4, Theorem 2.5].

This “trivial” lower bound can be improved using ideas similar to those used to
prove Theorem 1.1.

Theorem 2.3 Let ¢ > 0 be arbitrarily small. Uniformly for j < x'/27¢ and x suffi-
ciently large (in terms of c), we have

(log j)9 (loglog(2j))3/2

Nj(x) >

Proof. It follows from [3, Theorem 4] that for j < x!/ 2=¢_ the number of integers
n < x with exactly 1 divisor in (j/2, j] is of magnitude x(log j)~® (loglog(2;) /2.
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Further, from the comments in the first paragraph of Section 1.3 in [3], the same is
true if we ask in addition that » is odd. For such an odd number #, it follows by an
argument akin to that of Lemma 2.1 that 7;(2n) is odd. The claimed lower bound
follows.

To close the gap between this lower bound and Theorem 1.1, the following strat-
egy might be tried. It follows from Lemma 2.1 and its proof that if 7;(n) is odd and
if p is the least prime with p||n, then n has a divisor in (j, pj] that is divisible by
p. (It is also possible that n has no prime factor p with p||n, but such numbers are
negligible.) Let N;(x, p) denote the number of integers n < x such that (i) p is the
least prime with p||n and (ii) n has a divisor in (j, pj] divisible by p. Again follow-
ing the thoughts in the first paragraph of Section 1.3 of [3], it may be possible to
show that for each p < exp((logj)!/?), N;(x,p) is uniformly bounded above by a
constant times

1 x(log p)®
plogp (log j)° (loglog(2/))3/?"
That is, a factor plog p is introduced in the denominator due to the condition that
p is the least prime with p||n. Summing this estimate for p < exp((log j)'/?) yields
the estimate O(x(log j) % (loglog(2;))~/?), with larger values of p being trivially
negligible. Thus, we would have a match with the improved lower bound, at least
for j < x'/2¢.

The estimate (1) would follow if one could show that the number N}(x7 p) of
integers m < x/p having a divisor in (j/p, j] and such that if g||m then g > p, is
at most a constant times the expression in (1) for p < exp((logj)'/?). Multiply-
ing such a number m by p would cover all those n counted by N;(x,p), that is,
Nj(x,p) < Nj(x,p). It would seem that upper bounding N’(x, p) in this way is em-
inently provable using the ideas in [3], since integers m with such restrictions on
their small prime divisors seem less likely to have a divisor in a given interval than
integers in general.

6]

3 A corollary

We saw at the start that if j is randomly chosen in [1,n], it is more likely than not
that 7;(n) is odd, despite our theorem. This is because of the huge weight of the
interval [1/2,n). To equalize things, we might take a harmonic measure. For y € R,
y=>1,let Ty(l’l) =Ty (n) Let

S(n)={ye[l,n] : ty(n)isodd}, f(n)= lolgn/S(,,) %

Then we always have 0 < f(n) < 1. Further, if n is prime, then f(n) = 1, while if
n = 2p where p is prime, then f(n) — 0 as p — 0. We can ask what is the normal
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value of the statistic f(n). The following corollary of Theorem 1.1 addresses this
question.

Corollary 3.1 There is a set of integers o/ of asymptotic density 1, such that if
n— oo withn € o, then f(n) — 0.

Proof. Since we always have f(n) € [0, 1], the assertion of the corollary is equiva-
lent to

Y f(n)=o(x), x— oo,

n<x

and this in turn is equivalent to

Z f(n)=o(x), x—oo,

ne(%x,x]

which is equivalent to

dy
Z / — =o(xlogx), x— co. (2)
ne(%x,x Y
Forn € (2x x], consider its divisors 1 = dj < dp < -+ < dg(,) = n, so that

dy (di-H)
- = lo .
./S(n) y o L log d;

i<t(n)
i odd

The interval (d;,d;;1) has the companion interval (n/d;;1,n/d;), which is the same
as (dg(n)—i»dz(n)—i+1)- Further if n is not a square, i is odd if and only if 7(n) —i is
odd. Thus, for n not a square,

dy /
-~ =2
/n lf]y

Since the squares are negligible, to prove (2), it now suffices to prove that

Z / d _ o(xlogx), x—»co. 3)
Sn[tya) Y

ne(%x,x]

This sum is equal to

j+1
Y ) log—,
ne(%x,x] j<y/n J
7;(n) odd

except for a possible error of o(1) as x — o caused by j = [/n]. Ignoring this
triviality, the sum in (3) is now equal to
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i+ 1
Y 1ogi Y 1<x Y ﬁ < x(logx)'/(1+9),
£ o4 J(log(2/))°/(1+9)

J<v/x ne(zx,x] J<\[

j<vn
T_,‘(}'l) odd

using log((j+1)/j) < 1/j and Theorem 1.1. Since 1/(1+ 8) < 1, it follows that
(3) holds, and as we have seen, this is sufficient for the corollary. This completes the
proof.

4 Final thoughts

Though the situation is much simpler in this note, the idea behind our Lemma 2.1
was inspired by the argument in Maier [5].

One might ask about other residue classes for 7;(n). Our proof can show that for
each fixed positive integer k, the set of numbers n such that k | T(n) and k { 7;(n) has
asymptotic density o(1) as j — oo. For k not a power of 2, it might be interesting to
investigate the density of those numbers n where k { T(n) and also k { 7;(n).

It is interesting to see several connections of this note to work of A. S. Besi-
covitch. First, Ford’s theorem, cited in Lemma 2.2, is the latest chapter in a long
story that began with work of Besicovitch [1] in 1934, when he showed that
limy_,. H(x,y,2y)/x has liminf O as y — 0. And second, this note was motivated
originally by looking for examples for sequences that perhaps violated a result
known as the Besicovitch pseudometric, see [2]. In particular, it was thought if the
densities lim,_,.. N;(x)/x did not approach O, then this would be a violation. It is
interesting that we used a descendant of the 1934 Besicovitch result to show that
these densites do approach 0 and so there is no counterexample.
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