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Abstract. If A is a finite set of positive integers, let Eh(A) denote the set of h-fold

sums and h-fold products of elements of A. This paper is concerned with the behavior

of the function fh(k), the minimum of |Eh(A)| taken over all A with |A| = k. Upper
and lower bounds for fh(k) are proved, improving bounds given by Erdös, Szemerédi,

and Nathanson. Moreover, the lower bound holds when we allow A to be a finite set

of arbitrary positive real numbers.

For finite sets of real numbers A and B, define

A+B = {a+ b : a ∈ A, b ∈ B}, AB = {ab : a ∈ A, b ∈ B}.

More generally, if h > 2 define

hA = {a1 + · · ·+ ah : ai ∈ A}, Ah = {a1 · · · ah : ai ∈ A}.

Erdös [E] conjectured that for any finite set A of positive integers,

(1) |Eh(A)| �ε |A|h−ε,

where
Eh(A) = hA ∪Ah.

In other words, no set A can have simultaneously few sums and few products.
Notice that trivially

(2) 1
2 (|hA|+ |Ah|) 6 |Eh(A)| 6 |hA|+ |Ah|.

Our chief interest here is the behavior of the function

fh(k) = min{|Eh(A)| : |A| = k,A ⊂ N}.

Erdös and Szemerédi [ES] proved the non-trivial bounds

(3) k1+δ � f2(k)� k2−c/ log2 k.
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where c and δ are positive constants an logk x denotes the kth iterate of the loga-
rithm. Nathanson [N] showed that δ = 1/31 is admissible, and we note that the
argument works for any finite set of positive real numbers. No bounds for |Eh(A)|
for h > 3 have been published. However, for any a ∈ A, Ah contains ah−2p for each
p ∈ A2 and hA contains (h− 2)a+ s for each s ∈ 2A. Thus, by (2),

(4) |Eh(A)| > 1
2 (|hA|+ |Ah|) > 1

2 (|2A|+ |A2|) > 1
2 |E2(A)|.

We also have

|Eh(A)| 6 |hA|+ |Ah| 6 |A|h−2(|2A|+ |A2|) 6 2|A|h−2|E2(A)|.

In particular, if (1) fails for a particular h, it fails for all larger h.
When h = 2, (1) has been established for certain very special sets of positive

integers A. Nathanson and Tenenbaum [NT] proved (1) under the assumption
that |2A| 6 3|A| − 4 using Freiman’s structure theory of set addition (see [F]). As
noted by Nathanson and Jia [NJ], (1) can also be proved in the case where A is
contained in a “short” interval of length |A|o(log2 |A|) using the fact that log d(n) =
O(log n/ log2 n), where d(n) is the number of divisors of n.

In this note, we improve the lower bound for |E2(A)| using a refinement of
Nathanson’s argument [N].

Theorem 1. If A is a finite set of positive real numbers, then

|E2(A)| > 1
6 |A|

1+1/15.

A slight modification of one part of the argument produces lower bounds for
|Eh(A)| for h > 3 which are superior to the bound obtained by combining (4) with
Theorem 1. However, the exponent only tends to 8/7 as h tends to infinity.

Theorem 2. If A is a finite set of positive real numbers, then

|Eh(A)| � |A|1+
h−1
7h+1 .

Lastly, we investigate how small the sets Eh(A) can be. Erdös and Szemerédi
proved the lower bound in (3) by taking A to be a set of sufficiently “smooth”
numbers (numbers without large prime factors). Using modern results concerning
the distribution of smooth numbers, we prove an analogous result for fh(k), where
the “constant” c grows rapidly with h.

Theorem 3. For each fixed h, we have

fh(k) 6 kh−ch/ log2 k+O((log3 k)/(log2 k)
2),

where ch = h(h− 1) log h.

The starting point for the proof of Theorems 1 and 2 is a lower bound on the
number of sums and products when B is contained in a dyadic interval. In this
case, Nathanson [N] showed that |E2(B)| � |B|16/15.
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Lemma 1. Suppose B is a finite set of real numbers contained in [x, 2x] for some
positive x. Then

|2B|+ |B2| > 7
20 |B|

8/7.

Proof. Let k = |B| and suppose k > 107, for otherwise the right side in the lemma is
less than 4k−2 and the lemma is trivial. Suppose 1 6 l < k and group the numbers
in B as follows. Let B1 be the set of l smallest numbers in B, let B2 denote the
set of l smallest numbers in B\B1, etc. This partitions B into B1, B2, . . . , B[k/l]

with < l numbers left over. Let the diameter of a set be the difference between the
largest and the smallest numbers in the set. Let B∗ be the set Bi with smallest
diameter and let d be the diameter of B∗.

Now suppose 1 6 i < j 6 [k/l] with j − i > 3 and

b∗1, b
∗
2 ∈ B∗, bi ∈ Bi, bj ∈ Bj .

Then

(5) b∗1 + bi < (b∗2 + d) + (bj − 2d) < b∗2 + bj

and

(6)

bjb
∗
2 > (bi + 2d)b∗2

> bi(b
∗
1 − d) + 2db∗2

= bib
∗
1 + d(2b∗2 − bi) > bib∗1.

From now on consider only the sets B1, B4, B7, . . . . By (5) and (6), the sets B∗+Bi
are distinct, as are the sets B∗Bi. Let

(7) Pi = |B∗ ·Bi|, Si = |B∗ +Bi|.

Then

(8) |2B|+ |B2| >
∑

i≡1 (mod 3)

Pi + Si.

Fix i and define

r(m) = |{(b∗, bi) : b∗bi = m, b∗ ∈ B∗, bi ∈ Bi}|.

When r(m) > 0, denote by (b∗j , b
′
j) (1 6 j 6 r(m)) the distinct pairs of numbers

b∗j ∈ B∗, b′j ∈ Bi with product m. Notice that b∗j1 + b′j2 ∈ B
∗ + Bi for each of the

r(m)2 pairs (j1, j2). For each n ∈ B∗ +Bi, define

sm(n) = |{(j1, j2) : b∗j1 + b′j2 = n}|.

With m,n fixed there are 1
2 (sm(n)2− sm(n)) > sm(n)− 1 quadruples (j1, j2, j3, j4)

with b∗j1 < b∗j3 and

(9)
b∗j1 + b′j2 = b∗j3 + b′j4 = n,

b∗j2b
′
j2 = b∗j4b

′
j4 = m.
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On the other hand, given any four numbers (b∗j1 , b
∗
j2
, b∗j3 , b

∗
j4

) in B∗ with b∗j1 < b∗j3 ,
equations (9) have at most one solution b′j2 , b

′
j4

and thus i,m and n are uniquely
determined. If we let Ni be the number of quadruples corresponding to each i, then
by (7) and the Cauchy-Schwarz inequality,

Ni >
∑
m

∑
n

sm(n)− 1

>
∑
m

(r(m)2 − Si)

> l4/Pi − PiSi.

Also, Ni > 0 for each i. If b∗j1 < b∗j3 , then (9) implies b∗j2 < b∗j4 and hence

(10)
∑
i

Ni 6 1
4 l

4.

Define

I1 = {i ≡ 1 (mod 3) : SiP
2
i >

1
2 l

4},
I2 = {i ≡ 1 (mod 3) : SiP

2
i <

1
2 l

4}.

A straightforward calculation shows that

(11) Si + Pi >
3

2
l4/3 (i ∈ I1).

We also have Ni > l4/2Pi for i ∈ I2, hence by (10),

(12)
∑
i∈I2

1

Pi
6

1

2
.

Let M1 = |I1|, M2 = |I2| and H = M1 + M2. By (8), (11), (12) and the Cauchy-
Schwarz inequality,

|2B|+ |B2| > 3
2 l

4/3M1 +
∑
i∈I2

Pi

> 3
2M1l

4/3 + 2M2
2

= 3
2 l

4/3(H −M2) + 2M2
2 .

The right side is minimized at M2 = 3
8 l

4/3. Since H > 1
3 [k/l] > k

3l −
1
3 , we obtain

|2B|+ |B2| > 3
2Hl

4/3 − 9
32 l

8/3

> 1
2kl

1/3 − 9
32 l

8/3 − 1
2 l

4/3.

(13)

Ignoring the last term, the optimal value of l is

l =
[(

2
9k
)3/7]

.

The lemma now follows from (13), since k > 107 and l > ( 2
9k)3/7 − 1. �
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Lemma 2. Suppose h > 2 and that for every finite set of positive real numbers B
contined in some interval [x, 2x], we have |hB| + |Bh| > c|B|1+1/u. Then for any
finite set A of positive real numbers, we have

|Eh(A)| > c
2 (chhh!/2)−

1
hu+1 |A|1+

h−1
hu+1 .

Proof. Let k = |A| and break A into blocks

Aj = A ∩ [2j−1, 2j) (j ∈ Z).

Let

J = {j : |Aj | > 0},

m =
∑
j∈J
|Aj |1+1/u.

For each h-tuple of numbers a1, a2, . . . ah ∈ Aj , we have
∑
ai ∈ [h2j−1, h2j) and∏

ai ∈ [2h(j−1), 2hj). Therefore, the sets hAj are disjoint, as are the sets Ahj .
Hölder’s inequality gives

k =
∑
j∈J
|Aj | 6 |J |

1
u+1

∑
j∈J
|Aj |1+1/u


u
u+1

= m
u

u+1 |J |
1

u+1 ,

which implies |J | > ku+1m−u. Choose one number aj from each nonempty set Aj
and set n = 2 + [ log(h−1)log 2 ]. For 0 6 r 6 n− 1, let Jr be the subset of J with j ≡ r

(mod n). For some r, |Jr| > |J|
n . Form the set C = {aj : j ≡ r (mod n)}. Since

ai+n > 2n−1ai > hai for each i, the sums of distinct h-tuples of numbers in C are
distinct. It follows from (2) and the hypothesis that

|Eh(A)| > max

1

2

∑
j∈J
|hAj |+ |Ahj |,

|C|h

h!


> max

(
cm

2
,
khu+hm−uh

hhh!

)
.

The right side is minimized when mhu+1 = 2khu+h/(chhh!), and this completes the
proof. �

Combining Lemma 1 with Lemma 2 (taking h = 2, c = 7
20 , u = 7) gives Theorem

1. Theorem 2 follows from (4) and Lemmas 1 and 2. Proving fh(k) � kβ(h) with
β(h) tending to ∞ with h will require a non-trivial extension of Lemma 1 to the
case h > 3, and it is not clear how this can be accomplished.

It is curious that nowhere in the argument was it necessary to assume the set A
was a set of integers. Based on this observation, we make the following
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Conjecture. If A is a finite set of positive real numbers, then

|Eh(A)| �ε |A|h−ε.

Before proving Theorem 3, we need a few definitions. A natural number n is
said to be y-smooth if n is divisible by no prime factor > y. Denote by Ψ(x, y)
the number of y-smooth numbers 6 x. Important in the study of Ψ(x, y) is the
Dickman function ρ(u), defined for u > 0 by

ρ(u) = 1 (0 6 u 6 1),

ρ(u) = 1−
∫ u

1

ρ(v − 1)

v
dv (u > 1).

We quote the following well-known results (Theorem 1.2 and Corollary 2.3 of [HiT]).

Here we take u = log x
log y .

Lemma 3. For any fixed ε > 0 we have

Ψ(x, y) = xρ(u)1+O(E(u))

uniformly in the range
y > 2, 1 6 u 6 y1−ε,

where
E(u) = exp{−(log u)3/5−ε}.

Lemma 4. Uniformly in u > 3, we have

ρ(u) = exp

{
−u
(

log u+ log2 u− 1 +O

(
log2 u

log u

))}
.

From now on assume h is fixed. In particular, constants implied by the O−
symbol may depend on h. Suppose x is large and set

δ =
2h log h

log2 x
, α =

h+ δ

h− 1
.

Let A be the set of (log x)α-smooth numbers 6 x. Set k = |A| = Ψ(x, (log x)α) and

u = log x
α log2 x

. By Lemmas 3 (with ε = min(1/2, 1− 1/α)) and 4, we have

k = xρ(u)1+O(E(u))

= x exp

{
− log x

α log2 x
(log2 x− logα− 1) +O(L(x))

}
= x1−1/α exp

{
O

(
log x

log2 x

)}
,

where

L(x) =
log x log3 x

(log2 x)2
.
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Consequently,

(14) u =
log k

(α− 1) log2 k

(
1 +O

(
1

log2 k

))
.

Thus

(15) |hA| 6 hx 6 kρ(u)−1−O(E(u)).

Lemma 3 also gives

(16) |Ah| 6 Ψ(xh, (log x)α) = xhρ(hu)1+O(E(hu)) = kh
(
ρ(hu)

ρ(u)h

)1+O(E(u))

.

By Lemma 4 and (14), we deduce

ρ(u) = exp

{
− log k

α− 1
+

1 + log(α− 1)

α− 1

log k

log2 k
+O(L(k))

}
> exp

{
−(h− 1)(1− δ +O(δ2)) log k − (h− 1) log h

log k

log2 k
+O(L(k))

}
> k−(h−1) exp

{
h(h− 1) log h

log k

log2 k
+O(L(k))

}
.

Similarly, we obtain

ρ(hu)

ρ(u)h
= exp

{
−h(h− 1) log h

log k

log2 k
+O(L(k))

}
.

Combining these estimates with (15) and (16) gives

|hA|+ |Ah| 6 kh exp

{
−h(h− 1) log h

log k

log2 k
+O(L(k))

}
,

which completes the proof of Theorem 3.
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Birkhäuser Verlag, Basel, 1983, pp. 213–218.

[F] G. Freiman, Foundations of a structural theory of set addition, Translations of Mat-
hematical Monographs, vol. 37, Amer. Math. Soc., Providence, R. I., 1973.

[HaT] R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, 1988.

[HiT] A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres
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