Localized large sums of random variables
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Abstract

We study large partial sums, localized with respect to the sums of variances, of a sequence
of centered random variables. An application is given to the distribution of prime factors of
typical integers.
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1 Introduction

Consider random variable$;, Xs, ... with EX; = 0 andEX? = o7. Let

Spn=Xi+-+X, si=o01++o0,

n

and assume that (a) — oo asn — oo.
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Given a positive functiorfy > 1 + 1/N, we are interested in the behavior of

=liminf max |S,|/sn.
N—oo N<s2<Nfy

If we replacdim inf by lim sup, it immediately follows from the law of the iterated
logarithm that/ = oo almost surely wheryy is bounded. Our results answer a
guestion originally raised, in oral form, by AagBzy and for which a partial an-
swer had previously been given by the second author, see Chap. 3 of Oon (2005).

2 Independent random variables

Assume that theX; are independent. ThéBS2 = s2. In addition to condition (a),
we will work with two other mild assumptions, (B).,/s; < 1 whens; > 0
and (c) for every\ > 0, there is a constant, > 0 such that ifn is large enough
ands? > 2s%, then

P (|Sm — Su| = Asm) = ca.

Condition (b) says that no term is}, dominates the others. Condition (c) follows
if the Central Limit Theorem (CLT) holds for the sequence&gfsince CLT forsS,,
implies CLT forS,, — S,, as(m —n) — oo. For example, (c) holds for i.i.d. random
variables, under the Lindeberg condition

Ve >0, lim > E(Xf/si XG> 5sn> =0

1<G<n
and the stronger Lyapunov condition

30>0: > EIX* =o(s2™).

1<<n
Condition (c) is weaker, however, than CLT.

Theorem 1 (i) Suppose (a), (b), andy = (log N) for some constant/ > 0.
Then! < oo almost surely.

(ii) Suppose (a), (b), (c) andy = (log N)¢™) with £(V) tending monotonically
to co. Then/ = oo almost surely.

Remark. In the first statement of the theorem we show in fact that almost surely
I < 15\/ M + ].(III&X5].>0 Sj_H/Sj)Q.

Lemma 2 (Kolmogorov’s inequality, 1929) We have

]P)(HlaXlgjgk |SJ| 2 )\Sk) < 1/)\2 (l{? 2 1)



Proof of Theorem 1By (a) and (b), there is a constabtso thats,/s; < D for
all largej. Define

h(n) := max{k : s; < n} (n e N¥),
so that the conditiond” < s? < N fy andh(N) < n < h(N fy) are equivalent.
We first consider the case whég := (log N)M. Let
Ny o= 0TI 4(j) = (M + 1)(log j)/ log2), Hj =29,

and

Uj = h(N;), Uje=h2'N;) 0<t<t(5), V= h(H;N;) = Ujey)-
Itis possible that/; ., = U;, for somet. Note that for large, H;N; > N; fy,.
Let k& be a constant depending only dhandD. Forj > 1 define the events
Aj =A{[Sv,| <sup by
B;:= () Bj: where B;, := { max 1SU 1001 — Sl < ksy, +1t}’

0<t<t(j)—1 Ujt1,:<n<Uj 41,641
CJ :{‘SU]'+1 SV’ 25U+1}‘
By (b) and the definition ok(V), we have
D71\ /2!N; < sy, < 4/2!N; (1)
for all j, ¢. It follows from Lemma 2 that

2
P(A;) < D2H N < D—2
Nj+1 J
Thus,Y",~; P(4;) < oo and hence almost surely there iga0 that4; occurs for
J = jo- Applying Lemma 2 again yields

2 _ g2 2 1 2
p(Bi) < SUjt1a41 ~ SUjan < D22t Nj+1 _ 2D
WS k252 SOR2AN,, k2
Ujsit g+l

If kK =3D+vM + 1, then

22 t(5) 1
P(B;) = (“?) >
for large;. Also by Lemma 2P(C;) > 2, and sinceB; andC; are independent,
> P(B;C)) =

j>1



Since the event®;C;; are independent, the Borel-Cantelli lemma implies that al-
most surely the event8;C; occur infinitely often. Thus, the evert; B;C; occurs

for an infinite sequence of integefsTake such a index, letn € [U;44, V;4+1] and
Ujt1,49-1 < n < Ujy14, Wherel < g < t(j + 1). We have by several applications
of (1)

|Sn| < ’SV]| + |SU]'+1 - SV]| + Z |SUj+1,t - SUj+1,t+1‘ + |STL - SUj+1,g—1|

0<t<g—2

< 3SUJ+1 +k Z SUj41,t

0<t<g—1

<{3+h(+22 4 420V N,
< 5k 21N,
< 5kDs, = 15D*(M +1)'/2s,,.
This completes the proof of part (i) of the theorem, since
Vigr = h(35MTIN;) > h(N;log N;)
for largej.
Now supposefy = (log N)¢Y) with £(N) tending monotonically tec.

Let)\ > 0 be arbitrary and defin& := 2D, Let N} be so large thafy: > K. For
> 1let Ny, = Ny K*9), whereu(j) := |log fx:/log K |. Put
U :=h(N;), U, :=h(K'N;)(0<t<u(j)).

J J

Let J; .= [U,Ur,] and
Y; = meé}]x 1S/ 8n-

We have

u(j) =2 1= Ni, > KN; = u(j)/logj — oo.

Therefore, by (c), ifj is sufficiently large then
P(Y; <A2) < I P(ISus, — Sue, | < 3\, + 502, )
1<t<u(j) ’ ’ ’ ’

< [T P(ISvs, = Sur, | < AJK'N;)

1<tu(y)
' 1
<(1— CA)“(J) < .
J
Thus
Z]P’ <MN/2) <

j=1
Almost surely,Y;, < A/2 for only finitely manyk.



Theorem 1 has an analog for Brownian motion, which follows from Theorem 1 and
the invariance principle.

Theorem 3 Let W () be Brownian motion off), co). If fy = (log N)* with fixed
M > 0, then almost surely

t
I =liminf max w < 00
N—oco N<t<Nfy +/t

If fx = (log N)*™) with §(N) — oo, thenI = oo almost surely.

Theorem 3 can be proved directly and more swiftly using the methods used to
establish Theorem 1. By invariance principles (e.g. Philipp , 1986), one may deduce
from Theorem 3 a version of Theorem 1 where stronger hypotheses ¢ thie

assumed. As it stands, now, however, Theorem 1 does not follow from Theorem 3.

3 Dependent random variables

The conclusions of Theorem 1 can also be shown to hold for certain sequences of
weakly dependent random variables by making use of almost sure invariance prin-

ciples. We assume that (d) there exists a sequence of i.i.d. normal random variables
Y; with EYJ? = 0]2, defined on the same probability space as the sequen&e, of

and suchthatitZ, =Y, +---+Y,, then

|Sy, — Zn| = O(sn) a.s.

Of course the variablels; are dependent on th€;, but not on each other. Property

(d) has been proved for martingale difference sequences, sequences satisfying cer-
tain mixing conditions, and lacunary sequendgs= {n;w} withinfn;.,/n; > 1,

w uniformly distributed in0, 1] and{x} is the fractional part of. See e.g. Philipp
(1986) for a survey of such results.

Theorem 4 (i) Suppose (a), (b), and (d). ify := (log N)M for some constant
M > 0, then < oo almost surely.

(i) Let £(V) tend monotonically tao and setfy := (log N)¢™). Thenl = oo
almost surely.

By (d),
I=0()+liminf max |Z,|/sn,

N—oo N<s2<Nfn

and we apply Theorem 1 to the sequence&’pfThe variableZ,, is normal with
variances?, hence (c) holds.



4 Prime factors of typical integers

Consider a sequence of independent random variableéadexed by prime num-
bersp, such that?(Y,, = 1) = 1/p andP(Y, = 0) = 1 — 1/p. We can think ofY,,
as modelling whether or not a “random” integer is divisiblefpyAs EY,, = 1/p,
we form the centered r.v.X, = Y, — 1/p (we may also definé; for non-prime;
to be zero with probability 1). Let

T,=%Y, S.=3X,

psn p<n
2 __ ’ i
We haveE X} = (1 — 1/p)/p, hence by Mertens’ estimate

1 1
sizzf—ﬁzloan%—O(l).

Here and in the sequdkg, denotes, for integek > 2, the k-fold iterated log-
arithm. SinceE|X,|> < 1/p, the Lyapunov condition holds with = 1. Then

(a), (b) and (c) hold, and therefore the conclusion of Theorem 1 holds. Here take
D = max,>2 Sp41/5n SinCes; = 0.

Let w(m,t) denote the number of distinct prime factorsrefwhich are< ¢. The
sequencgT, : n > 1} mimics well the behavior of the functian(m,n) for a
‘random” m, at least whem is not too close ton. This is known as the Kubilius
model. It can be made very precise, see (Elliott , 1979, Ch. 3, especially pp.119—
122) and Tenenbaum (1999) for the sharpest estimate known to date. Suppose
is an integer witl2 < r < z andr = 2%, w,(m) = (w(m,1),...,w(m,r)) and
suppos&? is any subset oZ.". Then, given arbitrary < 1, and uniformly inz, r
and@, we have

31;|{m <z:w(m) e} = IP’((Tl, 1) € Q) +0 (x_c —l—e_“log“) N 4]

An analog of Theorem 1, established by parallel estimates, provides via (2) infor-
mation about localized large values of

Q(ma t) = |w(m7 t) - logQ t|/ \V 10g2 t.

Theorem 5 (i) Let M > 0 be fixed,fy := (log N)* and putK := 30D*/M + 1.
If g = g(m) — oo monotonically asn — oo in such a way thay?f,> < log, m
for large m, then for a set of integers of natural densityt,? we have

min max m,t) < K.
g(m)<N<g(m)? N<logy t<N fy o(m,t) <

2 A subsete of N* is said to have natural density /i N [1,z]| = = + o(z) asz — oo.



(i) Let £&(N) — oo in such a way thatfy := (log N)¢™) < N. Suppose that
g(m) — oo monotonically asn — oo, thatg(m) < (log, m)'/'°, and let

I, == min max_ o(m,t).
g(m)<N  N<logy <N fn
Nfn<logym

Then,I,, — oo on a set of integers: of natural densityi.

We follow the proof of Theorem 1. Keeping the notation introduced there, we see
that for largeJ,

P( N W)< > Zem (1-2)<5

J<G<3J/2 J<G<3J/2 J? J<i<3J/2

For largeG, defineJ by N1 < G < Njio. ThenG®3 > N35/9)40 andJ >y
(log G)/log, G. Thus, for large7,

P min max |S|<K 21—0(—)21—0 08 & )
GENLG3/3 h(N)<n<h(NfN) Sp J log G

The direct number theoretic analog|6f,|/s,, is

lw(m, t) = $per 1/p)

L= p)fp
By (2), if G is large and < /log, = (S0 thatG®/3 fs/s < (log, x)7/%), then

log, G
logG |~

o(m,t) =

x GKN<G5/3 h(N)<n<h(Nfy)

1
{mgm min max Q(WLJ)éKHZl—O(

Sinceg(m,t) = o(m,t) + O (1/,/log2t), the first part of the theorem follows.

The second part is similar. Note thatn, z) — w(n,azl/vl"gﬂ) < 4/log, x for

n < z, and, for brevity, writey = g(1/z). By (2) with u := /log, =, we have, for
any fixedK and larger,

1 ) ~
— {m <z: min max  o(m,t) < KH
x Nzg  N<logy t<N fn
N fn<logy, m
<1 Vr<m<z: i o(t) < K +2 +1
SEVESTSTYORES vaomiangy O S NG
Nfn<Z(z)
Sn
<P inf max | |<K+2 —|—O( ),
N2g  Rm(N)<n<h(Nfy) Sp, log, x
Nfn<Z(z)



where.#(z) := log, x — §logyz. Sincefy < N, we haveN?,, < (N7)?in the
notation of the proof of Theorem 1. The interval

(10g2 ZL‘)I/IO, g(x)l/Q

therefore contains at least one interval By the proof of Theorem 1, for large
the probability above does not exceed.;, 1/ < 1/(jo — 1), wherej, — oo as
xr — OQ.

Remarks. The upper bound? of N in the first part can be sharpened. By the
same methods, similar results can be proved for a wide class of additive arithmetic
functionsr(m, t) = > ey, 7(p®) in place ofw(m, ).

Acknowledgment. The authors are indebted to Walter Philipp for helpful discus-
sions on the use of almost sure invariance principles.

References

P.D.T.A. Elliott, 1979 Probabilistic Number Theory, Bpringer-Verlag, New York.

S.M. Oon, 2005.Construction des suites binaires pseudéeadbires These
d’universi&, Nancy, Universé Henri Poinca&@—Nancy 1, UFR STMIA , 110 pp.

W. Philipp, 1986Invariance principles for independent and weakly dependent ran-
dom variablesin Dependence in Probability and Statistics (Oberwolfach, 1985),
225-268, Progr. Probab. Stati$i, Birkhauser Boston, Boston, MA.

G. Tenenbaum, 1999. CribleEtatostlene et modle de Kubilius, in: K. G¥ry, H.
Iwaniec, J. Urbanowicz (edsNumber Theory in Progres®roceedings of the
conference in honor of Andrzej Schinzel, Zakopane, Poland 1997, 1099-1129,
Walter de Gruyter, Berlin, New York.



