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ABSTRACT. This paper is an announcement of many new results concerning
the set of totients, i.e. the set of values taken by Euler’s ¢-function. The main
functions studied are V(x), the number of totients not exceeding x, A(m),
the number of solutions of ¢(z) = m (the “multiplicity” of m), and Vi (x), the
number of m < & with A(m) = k. The first of the main results of the paper is a
determination of the true order of V(z). It is also shown that for each k > 1, if
there is a totient with multiplicity &, then Vi (x) > V(). We further show that
every multiplicity k£ > 2 is possible, settling an old conjecture of Sierpiniski. An
older conjecture of Carmichael states that no totient has multiplicity 1. This
remains an open problem, but some progress can be reported. In particular,
the results stated above imply that if there is one counterexample, then a
positive proportion of all totients are counterexamples. Determining the order
of V(z) and Vi (z) also provides a description of the “normal” multiplicative
structure of totients. This takes the form of bounds on the sizes of the prime
factors of a pre-image of a typical totient. One corollary is that the normal
number of prime factors of a totient < z is cloglog x, where ¢ &~ 2.186. Lastly,
similar results are proved for the set of values taken by a general multiplicative
arithmetic function, such as the sum of divisors function, whose behavior is
similar to that of Euler’s function.

Let V denote the set of values taken by Euler’s ¢-function (totients), i.e.

V =1{1,2,4,6,8,10,12,16,18,20,22,24,28,30,...}.

Let
V(z) =V NIl a],
(1) A(m) = [{n: ¢(n) = m}|,

We will refer to A(m) as the multiplicity of m. This paper summarizes recent
work on the following questions.

1. What is the order of V' (z)?

2. What is the order of Vj(z) when the multiplicity k is possible?

3. What multiplicities are possible?

4. What is the normal multiplicative structure of totients?

Received by the editors August 13, 1997.

1991 Mathematics Subject Classification. Primary 11A25, 11N64; Secondary 11N35.

Key words and phrases. Euler’s function, totients, distributions, Carmichael’s conjecture,
Sierpinski’s conjecture.

©1998 American Mathematical Society

27



28 KEVIN FORD

1. The Prime Number Theorem implies V(z) > z/logz, since ¢(p) = p — 1 for
primes p. Pillai [Pi] gave the first non-trivial bound on V(z), namely

xr
Viz) <« 7(1% )R/

Using sieve methods, Erdés [E1] improved this to

x
Y Togay=
and later in [E2] showed that

xlogy x

Viz) >

Here and throughout this paper log;, z denotes the kth iterate of the logarithm.
Further sharpening of the upper and lower bounds were found by Erdés and Hall
[EH1], [EH2], Pomerance [P1], and Maier and Pomerance [MP]. The last result is

(2) V(@) = o ep{(C +o(1))(ogy 2)7},

logz

where C'is a constant defined as follows. Let
F(;v):zanx", anp=(Mm+1)log(n+1) —nlogn — 1.
n=1

Since a,, ~ logn and a,, > 0, it follows that F(z) is defined and strictly increasing
on [0,1), F(0) = 0 and F(z) — oo as * — 1. Thus, there is a unique number g
such that

F(o)=1 (0= 0.542598586098471021959...)

and we set

1
C=—— =0.81781464640083632231 . . . .
2|log o

Our first major result is a determination of the true order of V(x). First define
D =2C(1+log F'(p) —log(2C)) — 3/2
= 2.17696874355941032173. .. .

Theorem 1 ([F1, Theorem 1]). We have

Viz) = lozx exp{C(logy * — log, z)? + Dloggx — (D 4+ 1/2 — 2C) log, = + O(1)}.

2. Erdos [E3] showed by sieve methods that if A(m) = k, then for most primes
p, A(m(p — 1)) = k. If the multiplicity k is possible, it follows immediately that
Vie(z) > x/logxz. Applying the machinery used to prove Theorem 1, we show that
for each k, either Vi (x) = 0 for all z, or V() is the same order as V().

Theorem 2 ([F1, Theorem 2]). If there is a number d with A(d) =k, then
Vi(z) >, d™ 17V (z) (x > zo(k)).

In other words, a positive fraction of totients have multiplicity k if the multiplic-
ity k is possible. This suggests that the multiplicity of “most” totients is bounded.
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Theorem 3 ([F1, Theorem 3]). We have

{meV(@): A(m) > N} _  Vilz) -
) = k;v T < N~lexp{O(/log N)}.

3. In 1907, Carmichael [C1] announced that for every m, the equation ¢(x) = m
has either no solutions x or at least two solutions. In other words, no totient can
have multiplicity 1. His proof of this assertion was flawed, however, but he did show
in [C2] that no number m < 10%7 has multiplicity 1, and conjectured that no such m
exists (this is now known as Carmichael’s Conjecture). Improved lower bounds for
a possible counterexample have been found by Klee [K], Masai and Valette [MV],
and recently by Schlafly and Wagon [SW], who showed that a counterexample must
exceed 1019:000:000 " Carmichael’s Conjecture, however, remains an open problem.

An immediate and important corollary of Theorems 1 and 2 is

Theorem 4 ([F1, Theorem 5]). We have

lim sup “//1((;)

Furthermore, Carmichael’s Conjecture is equivalent to the bound

lim inf Vi(@)

e V(a)

< 1.

=0.

Although this is a long way from proving Carmichael’s Conjecture, Theorem 4
shows that the set of counterexamples cannot be a “thin” subset of V. Either there
are no counterexamples or a positive fraction of totients are counterexamples.

The basis for the computations of lower bounds for a possible counterexample
is a lemma of Carmichael, generalized by Klee, which allows one to show that
if A(m) = 1, then 2 must be divisible by the squares of many primes. Using the
method outlined in [SW] and modern computer hardware, we push the lower bound
for a counterexample to an aesthetically pleasing bound.

Theorem 5 ([F1, Theorem 6]). If A(m) = 1, then m exceeds 10*" .

Aside from computations, the only other non-trivial result concerning the be-
havior of V;(x) is the bound

lim inf Vi(@) < 1,
z—oo V(z) T 2

proved by elementary methods in an unpublished note of Pomerance (see [P2]). A
modification of his argument combined with the computations giving Theorem 5
yields

Theorem 6 ([F1, Theorem 7]). We have

lim inf Vi(z) < 1(~5+000,000,000,
a—oc V(z)

In the 1950’s, Sierpinski conjectured that all multiplicities & > 2 are possible
(see [S1] and [E3]), and in 1961, Schinzel [S2] deduced this conjecture from his well-
known Hypothesis H. Schinzel’s Hypothesis H [SS], a generalization of Dickson’s
Prime k-tuples Conjecture [D], states that any set of polynomials Fy(n),. .., Fi(n),



30 KEVIN FORD

subject to natural restrictions, are simultaneously prime for infinitely many n. Us-
ing the modern theory of “almost primes” (numbers with few prime factors) to-
gether with an iterative approach, we provide an unconditional proof of Sierpinski’s
Conjecture.

Theorem 7 ([F2, Theorem 1]). For each k > 2, there is a number d with A(d) =
k.

Therefore, by Theorem 2, Vi (z) > V(z) for k > 2. The computations leading
to Theorems 5 and 6 motivate another classification of totients. Let V (z; k) be the
number of totients up to x, all of whose pre-images are divisible by k. A corollary
of the proof of Theorem 2 is

Theorem 8 ([F1, Theorem 8]). Ifd is a totient, all of whose pre-images are divis-
ible by k, then

V(s k) > d” 75V (x).
Thus, for each k, either V(z;k) =0 for all x or V(x; k) > V().

It is natural to ask for which & do there exist totients, all of whose pre-images are
divisible by k. A short search reveals examples for each k < 11 except k = 6 and
k =10. For k = 2,4 and 8, take d = 218257, for k = 3 or 9 take d = 54 = 2-33, for
k=5 take d = 12500 =4-5°, for k =7, take d = 294 = 6 - 72 and for k = 11, take
d = 110. It appears that there might not be any totient, all of whose pre-images
are divisible by 6, but I cannot prove this.

Conjecture. There is no totient, all of whose pre-images are divisible by 6.

In particular, any totient with a unique pre-image must have that pre-image di-
visible by 6, so the non-existance of such numbers implies Carmichael’s Conjecture.
4. Establishing Theorems 1 and 2 requires a determination of what a “normal”
totient looks like. This will initially take the form of a series of linear inequalities
in the prime factors of a pre-image of a totient. An analysis of these inequalities
reveals the normal sizes of the prime factors of a pre-image of a typical totient.
To state our results, we first define

Lo = Lo(z) = [2C(logg « — log, x)].
In a simplified form, we show that for all but o(V(z)) totients m < x, every pre-
image n satisfies
(3) logy gi(n) ~ ¢'(1 —i/Lo)logyz (0 < i< Ly),

where ¢;(n) denotes the (i + 1)st largest prime factor of n. Let w(m) denote the
number of distinct prime factors of m and let Q(m) denote the number of prime
factors of m counted with multiplicity. Then we have

Theorem 9 ([F1, Theorem 11]). Suppose g(x) is an increasing function of x sat-
isfying g(x) = o(logs x). For a given x, set Lo = Lo(z) and B; = 0'(1 —i/Lg) for
0 < i< Lg. Then the number of totients m < x with a pre-image n not satisfying

(4) log(Lo —i)logg(z) (1 <i<Lo—g(w))

log, gi(n) 1' 3 |
Bilogy x Lo(Lo — 1)
and

Lo(z) — g(z) < w(n) < Qn) < Lo(x) + 30g(x)o ="
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18
< V($) (6—10g2 g(x) + e—% log4wlogg(w)) )

In essence, Theorem 9 says that the set of n < x having about Lo (z) prime factors
distributed according to (4) generates almost all totients. It also says that for most
totients, all of its pre-images are “virtually” square-free. The function g(x) need
not tend to infinity. Notice that the intervals in (4) are not only disjoint, but the
gaps between them are rather large. In particular, this “discreteness phenomenon”
means that for most totients m < x, no pre-image n has any prime factors in the
intervals

log, p

0.999 > logy p
=

>0.543, 0.542 >
0gy T log,
This should be compared to the distribution of the prime factors of a normal integer
n < z (e.g. Theorem 12 of [HT]).

We also deduce the normal order of (m) and w(m) for totients m. If each prime

g:;(n) of a pre-image n is “normal” and (3) holds, then Q(m) should be about

> 0.295, etc.

logy
1—9°
Theorem 10 ([F1, Theorem 12]). Suppose € = e(x) satisfies 0 < e < 0.8. Then

(I+o+0*+ - )logya =

Q 1
# {m € V(x): 1Oém; _ 1_9‘ > 5} < V(z)exp{—Kelogsx + O(y/elogz x)},
) _
where
K= 26ul=0 _ 6077
1—(1+a)o

Consequently, if g(x) — oo as slowly as desired, then almost all totients m < x
satisfy

am) 1| _ g

logobz  1—p| = logga

Moreover, the theorem holds with (m) replaced by w(m).

Corollary 11 ([F1, Corollary 13]). If either h(m) = w(m) or h(m) = Q(m), then

3> o= (10 (55))

meV(x)

By contrast, Erdés and Pomerance [EP] showed that the average of Q(¢(n)),
where the average is taken over all n < z, is 2 (log, z)? 4+ O((log, 2)*/?).

The details of the proofs of these results are extremely complex and require very
delicate estimating, but the central ideas are fairly simple. First, for most integers
m, the prime divisors of m are “nicely distributed”, meaning the number of prime
factors of m lying between a and b is about log, b — log, a. This is a more precise
version of the classical result of Hardy and Ramanujan [HR| that most numbers
m have about logy m prime factors. Take an integer n with prime factorization
pop1 - - -, where for simplicity we assume n is square-free, and pg > p; > ---. By
sieve methods it can be shown that for most primes p, the prime divisors of p — 1
have the same “nice” distribution. If pg, p1, ... are such “normal” primes, it follows
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that ¢(n) = (po — 1)(p1 — 1) - - - has about logy n — log, p1 prime factors in [p1, n),
about 2(log, p1 — log, p2) prime factors in [pe2, p1], and in general, ¢(n) will have
k(logy pr—1 — logy pi) prime factors in [pg, pr—1]. That is, n has k times as many
prime factors in the interval [pg, pr—1] as does a “normal” integer of its size. If n
has many “large” prime divisors, then the prime factors of m = ¢(n) will be much
denser than normal, and the number, N7, of such integers m will be “small”. On
the other hand, the number, N>, of integers n with relatively few “large” prime
factors is also “small”. Our objective then is to precisely define these concepts of
“large” and “small” so as to minimize Ny + Ns.

The argument in [MP] is based on the heuristic that a normal totient is generated
from a number n satisfying

(5) log, ¢i(n) ~ o' logy x

for each 7 (compare with (3)). As an alternative to this heuristic, assuming all
prime factors of a pre-image n of a totient are normal leads to consideration of
a series of inequalities among the prime factors of n. Specifically, let x be large,
2/2 <n <z andlet go > g1 > --- denote the prime factors of n. Fix L and map n
to the point (z1,...,x5), where x; = log, ¢;/logy x if i < Q(n), and ¢; > 3, 2; =0
otherwise. Consider the following inequalities:

0<z, <--- <2y <1,
a1ry + - +apxry <1,
a1x2 + - +ap_1vp < 71,4

a1x3 + - +ap_oxrp < T2,

1251+ agxp < Tp-2.

We show that such n generate “most” totients and then reduce the problem of
counting such n to the problem of finding the volume of the region in RY defined
by these inequalities, denoted S;,. What we show is essentially

~ L
(6) Vix) =~ Tog s InLaXVol(SL)(log2 x)”.
With the estimate
L(L+3)/2

Vol(Sp) ~ 2

T(F/(Q))L7

the maximum in (6) occurs at about L = Lg(z) and Theorem 1 follows. Careful
analysis of these inequalities reveals that the bulk of Sy, is concentrated near the
point (B1,...,0L), where 8; = (1 — %)Ql It follows that “most” of the integers n
mapping into Sy, satisfy (3). Thus, the heuristic (5) gives numbers n whose smaller
prime factors are too large. In particular, with L = Lo(z), we have log, pr—1 =~
1o~ 1log, z ~ 1, an important observation for determining the true order of V (z).

Lastly, most of these results may be easily extended to more general multi-
plicative arithmetic functions such as o(n), the sum of divisors function. Defining
analogous functions V¢, Vy(x), Vi i (z) and A¢(m), we prove
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Theorem 12 ([F1, Theorem 14)). Suppose f : N — N is a multiplicative function
satisfying

{f(p) — p:p prime} is a finite set not containing 0,

> %«1, e(h) = exp{log, h(logs h)*}.
h>16

h square-full

Then the analogs of Theorems 1-3, 7 and 9-11 hold with f(n) replacing ¢p(n), with
the exception of the dependence on d in Theorems 2 and 3, which may be different.

The possible set of multiplicities for each f, however, depends on the particular
function, since the values of f(p*) for k > 2 play a more important role. In partic-
ular, the proof of Theorem 7 relies on the property that ¢(p?) = pé(p) for primes
p. However, when f = o, the analog of Theorem 7 has been proved ([FK, Theo-
rem 1]) and the method extends to many other functions satisfying the hypotheses
of Theorem 12 for which Af(m) = 1 has a solution.
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