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ABSTRACT. This paper is a comprehensive study of the set of totients, i.e. thé eatues taken by Euler’s
¢-function. We fist determine the true order of magnitudé&¢%), the number of totients z. We also show
that if there is a totient with exactly preimages undep (a totient with “multiplicity” &), then the counting
function for such totientsV; (x), satisfiesVi (z) > V(z). Sierphski conjectured that every multiplicity
k > 2is possible, and we deduce this from the Pritrteiples Conjecture. We also make some progress toward
an older conjecture of Carmichael, which states that no totient has multiplicifyellower bound for a possible
counterexample is extended 16" and the boundim inf, . Vi(z)/V (z) < 1075:900:000,000 js shown,
Determining the order o¥ (z) andVj(z) also provides a description of the “normal” multiplicative structure
of totients. This takes the form of bounds on the sizes of the prime facdtarpr@-image of a typical totient.
One corollary is that the normal number of prime factors of a totient is clog log z, wherec ~ 2.186.
Similar results are proved for the set of values taken by a general mdtipéarithmetic function, such as the
sum of divisors function, whose behavior is similar to that of Euler'sfiom.

1 Introduction

Let 7 denote the set of values taken by Eulerfunction (totients), i.e.

v ={1,2,4,6,8,10, 12,16, 18, 20,22, 24, 28,30, - - - }.

Let
V(x) =7 N[z,
Vi(z) =7 (2)l,

(1.1) ¢~ (m) = {n: ¢(n) = m},
A(m) = [~ (m)],

We will refer to A(m) as the multiplicity ofm. This paper is concerned with the following problems.

1. What is the order o¥ (z)?

2. What is the order oF(x) when the multiplicityk is possible?
3. What multiplicities are possible?

4. What is the normal multiplicative structure of totients?
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1.1 The order of V(z)

The fact thaty(p) = p — 1 for primesp impliesV (z) > x/log = by the Prime Number Theorem. Pillai
[28] gave the first non-trivial upper bound &f(x), namely
x
V(x) < (log x)(logQ)/e ’
Using sieve methods, Edd [8] improved this to
X
(logz)'~—=
for everye > 0. Upper and lower bounds féf () were sharpened in a series of papers by6E(@], Erdbs
and Hall [11, 12], Pomerance [29], and finally by Maier and Pomerf2&jewho showed that
__* 2
(1.2) V()= o ep{(C + (1)) (logy 2)°)

for a constant' defined below. Herég,, = denotes théth iterate of the logarithm. Let

V(r) <.

(1.3) F(x) = Z anz", anp = (n+1)log(n+1) —nlogn — 1.
n=1

Sincea,, ~ logn anda,, > 0, it follows that F'(z) is defined and strictly increasing ¢t 1), F'(0) = 0 and
F(x) — oo asx — 17. Thus, there is a uniqgue numbhesuch that

(1.4) F(o)=1 (o= 0.542598586098471021959...).
In addition, F’(x) is strictly increasing, and
F'(p) = 5.69775893423019267575 . . .

Let

(1.5) C=_ = 0.81781464640083632231 . ..
2|log |

and

(1.6) D =2C(1+log F'(p) — log(2C)) — 3/2

= 2.17696874355941032173 . ..
Our main result is a determination of the true ordeV¢f).

Theorem 1. We have

V(2) = ’

ogx

exp{C(logs = — log, z)?> + Dloggx — (D 4 1/2 — 2C) log, = + O(1)}.

1.2 The order of Vi (x)

Erdds [10] showed by sieve methods thatlifm) = k, then for most primeg, A(m(p — 1)) = k. If the
multiplicity % is possible, theVy(z) > z/log . Applying the machinery used to prove Theorem 1, we
show that if there exists: with A(m) = k, then a positive proportion of totients have multiplicity

Theorem 2. For everye > 0, if A(d) = k, then
Vi) > d™ 7V (2) (x = xo(d)).

Conjecture 1. For k > 2,
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x Vi(x) Vo/V. [ VB/V | Va/V [ Vs/V | Ve/V | Va/V

1M 180,184 | 0.380727| 0.140673| 0.098988 0.042545| 0.062730] 0.020790
5M 840,178 | 0.379462 0.140350| 0.102487| 0.042687| 0.063193| 0.020373
10M | 1,634,372 | 0.378719 0.140399| 0.103927| 0.042703| 0.063216| 0.020061
25M | 3,946,809 | 0.378198 0.140233| 0.105466| 0.042602| 0.063414| 0.019819
125M | 18,657,531} 0.377218| 0.140176| 0.107873| 0.042560| 0.063742| 0.019454
300M | 43,525,579 0.376828 0.140170| 0.108933| 0.042517| 0.063818| 0.019284
500M | 71,399,658 0.376690| 0.140125| 0.109509| 0.042493| 0.063851| 0.019194

TABLE 1. Vi (z)/V(z)for2 < k<7

Table 1 lists values oV (z) and the ratiod/;(x)/V (x) for 2 < k£ < 7. Numerical investigations seem
to indicate thatC), < 1/k?. In fact, atz = 500,000,000 we havel.75 < Vi(x)/V(z) < 2.05 for
20 < k < 200. This data is very misleading, however. Bsd[8] showed that there are infinitely many
totients for whichA(m) > m® for some positive constant,. The current record is; = 0.7039 [1].
Consequently, by Theorem 2, for infinitely makhyve have

Vi(2)
V(z)

Erdds has conjectured that every < 1 is admissible.
We also show that most totients have “essentially bounded” multiplicity.

> k,—l/c4+5 > k,—l.42

(x > zo(k)).

Theorem 3. Uniformly forxz > 2 and N > 2, we have
{m e ¥ (@): A(m) > N}| _
V(z) a

V() < exp{—%(logQ N)Q}.

k=N

Remark. The proof of [14, Theorem 3] contains an error, and the correatedf fin Sec. 7.1 below)
gives the weaker estimate given in Theorem 3.

In contrast, the average value dim) over totientsm < z is clearly > z/V(z) = (logz)'toM).
The vast differences between the “average” behavior and the “miobelaavior is a result of some totients
having enormous multiplicity.

A simple modification of the proof of Theorems 1 and 2 also gives boundsfients in short intervals.

A real numbe is said to be admissible if(z + 2%) — 7(z) > 2%/ log z with z sufficiently large. Here,
m(x) is the number of primes z. The current record is due to Baker, Harman and Pintz [2], who sthowe
thatd = 0.525 is admissible.

Theorem 4. If 0 is admissibley > z? and the multiplicityk is possible, then
Vilz +y) — Vi(z) < V(z +y) — V(z) < ?i/LyV(x +).

Consequently, for every fixed> 1, V(cx) — V(z) <. V(z).

Erdds has asked i (cx) ~ ¢V (z) for each fixed: > 1, which would follow from an asymptotic formula
for V(). The method of proof of Theorem 1, however, falls short of answgefibs’ question.

Itis natural to ask what the maximum totient gaps are, in other words what betiavior of the function
M (z) = max,, <z (v; — vi—1) if v1,v9,--- denotes the sequence of totients? Can it be shown, for example,
that forz sufficiently large, that there is a totient betweeandz + z'/2?

1.3 The conjectures of Carmichael and Siergiski

In 1907, Carmichael [4] announced that for evesythe equationp(x) = m has either no solutions
or at least two solutions. In other words, no totient can have multiplicity 1. Hisfpf this assertion was
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flawed, however, and the existence of such numbers remains an agdempr In [5], Carmichael did show
that no numbern < 103" has multiplicity 1, and conjectured that no suehexists (this is now known as
Carmichael’s Conjecture). Klee [24] improved the lower bound for a teverample td0%°°, Masai and
Valette [27] improved it tol0'%-°%° and recently Schlafly and Wagon [34] showed that a counterexample
must exceed(0'%:0%0.00 An immediate corollary of Theorem 2 (take= 1, k = 2 for the first part) is

Theorem 5. We have

lim sup 1‘/}((30))
T—00 X

Furthermore, Carmichael’'s Conjecture is equivalent to the bound

<1

Although this is a long way from proving Carmichael’s Conjecture, TheoBesmow that the set of
counterexamples cannot be a “thin” subsetofEither there are no counterexamples or a positive fraction
of totients are counterexamples.

The basis for the computations of lower bounds for a possible countepdads a lemma of Carmichael
and Klee (Lemma 7.2 below), which allows one to show that(ifn) = 1 thenz must be divisible by the
squares of many primes. Extending the method outlined in [34], we push tlee lmmnd for a counterex-
ample to Carmichael’s Conjecture further.

Theorem 6. If A(m) = 1, thenm > 101",
As a corollary, a variation of an argument of Pomerance [30] givesaitenfing.

Theorem 7. We have

lim inf Vi (@) < 10~5:000,000,000
R V@)

The proof of these theorems motivates another classification of totientd/ (ket) be the number of
totients up tar, all of whose pre-images are divisible by A trivial corollary to the proof of Theorem 2 is

Theorem 8. If d is a totient, all of whose pre-images are divisibledyythen
V(z; k) > d 1V (2).
Thus, for eaclk, eitherV (z; k) = 0 for all z or V(z; k) > V(x).

In the 1950's, Sierpiski conjectured that all multiplicities > 2 are possible (see [31] and [10]), and
in 1961, Schinzel [32] deduced this conjecture from his well-knowndtlygsis H. Schinzel’'s Hypothesis
H [33], a generalization of Dickson’s Primfetuples Conjecture [7], states that any set of polynomials
Fi(n),..., Fyx(n), subject to certain restrictions, are simultaneously prime for infinitely manysing a
much simpler, iterative argument, we show that Sieski's Conjecture follows from the Prime-tuples
Conjecture.

Theorem 9. The Primek-tuples Conjecture implies that for eagh> 2, there is a numbedt with A(d) = k.

Shortly after [14] was published, the author and S. Konyagin provagi8aki's conjecture uncondition-
ally for evenk [15]. The conjecture for odél was subsequently proved by the author [16] using a variant of
Lemma 7.1 below.
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1.4 The normal multiplicative structure of totients

Establishing Theorems 1 and 2 requires a determination of what a “normalitttmaks like. This will
initially take the form of a series of linear inequalities in the prime factors of drpagje of a totient. An
analysis of these inequalities reveals the normal sizes of the prime faclm®fimage of a typical totient.
To state our results, we first define

(1.7) Ly = Lo(z) = [2C(logg x — log, ) |.
In a simplified form, we show that for all bu{V'(z)) totientsm < =z, every pre-image satisfies
(1.8) logy ¢i(n) ~ 0'(1 —i/Lo)logyz (0 <i < L),

whereg;(n) denotes thé: + 1)st largest prime factor of. For brevity, we writel/(x; €) for the number of
totientsm < x which have a pre-image satisfying conditior#’. Also, let

Bi=0'(1—i/Ly) (0<i<Lo—1)
Theorem 10. Supposé < i < Ly. (8) If 0 < & < <1, then

m1
Vv <x;

logy gi(n) Lo(Lo — i) o i
— 1| > V ——e" 41 — .
gy & e | < V(x)exp 1 € og Ly
(b) If —320 <e< % then
log, gi(n)

V .
(x7 Bilogy

Using Theorem 10, we obtain a result about simultaneous approximatigof ¢2(n), . . ..

— 1‘ > 8) < V(z)exp {—%Lgs} .

Theorem 11. Supposd.g = Lo(z), 0 < g < 34/ 5e%; and0 <k < 5Lo. The number of totients < x
with a pre-imagen not satisfying

logy i(n) ilog(Lo — 1)

1.9 > ;
(19 Bilogy x ‘ g Lo(Lo — 1)

(1§i§L0—h)

is
<€ V() (7% 4 3971080 4 o~hoviETY)

Notice that the intervals in (1.9) are not only disjoint, but the gaps between #ne rather large. In
particular, this “discreteness phenomenon” means that for any) and most totients, < x, ho pre-image
n has any prime factorgin the intervals

> logy p
logy x
This should be compared to the distribution of the prime factors of a normakinteg = (e.g. Theorem
12 of [20]; see also subsection 1.5 below).
For a preimage: of a typical totient, we expect eaci(n) to be “normal”, that isw(q;(n) — 1) ~
log, ¢i(n), wherew(m) is the number of distinct prime factors of. This suggests that for a typical totient
v<x,

I
1—=¢ Z0+e, p—e=

logy
1—0o

Q(v)%w(v)z(l—l—g—i—@z—i—---)logﬂc:

Theorem 12. Suppose) = n(x) satisfied) < n < 1/3. Then

. Q(m) 1 Vix)
#mer o foga -l 1) <
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Consequently, i§i(x) — oo arbitrarily slowly, then almost all totients: < x satisfy

am) 1| _ g
logox 1—op| logga’

Moreover, the theorem holds wifl(m) replaced byw(m).
Corollary 13. If either g(m) = w(m) or g(m) = Q(m), then

> oo =8 (10 ()

me¥ (x)

By contrast, Erds and Pomerance [13] showed that the averad® 6fn)), where the average is taken
overalln < z,is %(logQ 7)% + O((logy x)3/2).

1.5 Heuristic arguments

As the details of the proofs of these results are very complex, we summagizertkral ideas here. For
most integersn, the prime divisors ofn are “nicely distributed”, meaning the number of prime factors of
m lying betweernu andb is aboutlog, b — log, a. This is a more precise version of the classical result of
Hardy and Ramanujan [22] that most number$iave aboutog, m prime factors. Take an integerwith
prime factorizatiorpgp; - - -, where for simplicity we assume is square-free, angy > p; > ---. By
sieve methods it can be shown that for most primethe prime divisors op — 1 have the same “nice”
distribution. Ifpg, p1, . .. are such “normal” primes, it follows that(n) = (po — 1)(p1 — 1) - - - has about
logy n — logy p1 prime factors inpy, n], about2(log, p1 — log, p2) prime factors inp2, p1|, and in general,
¢(n) will have k(logy pr—1 — logy pi) prime factors injpx, pr—1]. That is,n hask times as many prime
factors in the intervalpy, pr—1] as does a “normal” integer of its size.rifhas many “large” prime divisors,
then the prime factors ofi = ¢(n) will be much denser than normal, and the numBér, of such integers
m will be “small”. On the other hand, the numbé¥; of integers: with relatively few “large” prime factors
is also “small”. Our objective then is to precisely define these concepts i@fe"land “small” so as to
minimize N1 + Ns.

The argumentin [26] is based on the heuristic that a normal totient is dedéram a numben satisfying

(12.10) log, ¢i(n) ~ Qi log,

for eachi (compare with (1.8)). As an alternative to this heuristic, assuming all prinierfacf a pre-image
n of a totient are normal leads to consideration of a series of inequalities athemgime factors of.
We show that such generate “most” totients. By mapping tiidargest prime factors at (excluding the
largest) to a point iR, the problem of counting the number of sueh< z reduces to the problem of
finding the volume of a certain region B, which we call the fundamental simplex. Our result is roughly
V(z) ~ % max Ty, (logy x)F,
whereT}, denotes the volume of the simplex. It turns out that the maximum occurs=at o(z) + O(1).
Careful analysis of these inequalities reveals that “most” of the integfenswhich they are satisfied satisfy
(1.8). Thus, the heuristic (1.10) gives number®r which the smaller prime factors are slightly too large.
The crucial observation that theh largest prime factorl{ = Ly — 1) satisfiedog, pr, =~ % ol log, x is a
key to determining the true order bf(x).

In Section 2 we define “normal” primes and show that most primes are “nornidie set of linear
inequalities used in the aforementioned heuristic are defined and analy@edtion 3. The principal result
is a determination of the volume of the simplex defined by the inequalities, whiclresgxcursions into
linear algebra and complex analysis. Section 4 is devoted to proving the bpped forV (x), and in
section 5, the lower bound fdf; (x) is deduced. Together these bounds establish Theorems 1 and 2, as well
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as Theorems 4, 5 and 8 as corollaries. The distribution of the prime fad@®rge-image of a typical totient
are detailed in Section 6, culminating in the proof of Theorems 10-12 andl&grd3.

In Section 7, we summarize the computations giving Theorem 6, presentieenentary proofs of The-
orems 7 and 9, prove Theorem 3 and discuss other problems ®lgout). Lastly, Section 8 outlines an
extension of all of these results to more general multiplicative arithmetic furscsioch ag (), the sum of
divisors function. Specifically, we prove

Theorem 14. Supposef : N — N is a multiplicative function satisfying

(1.11) {f(p) — p: p prime} is a finite set not containing 0,
h(S
(1.12) > oy <1, for somes > 0.
hsquare-fullf( )

Then the analogs of Theorems 1-4, 8, 10-13 and 16 hold ftith replacing¢(n), with the exception of
the dependence ahin Theorems 2 and 8, which may be different.

Some functions appearing in the literature which satisfy the conditions ofr&hed4 arer(n), the sum
of divisors function,p*(n), c*(n) andy(n). Here¢*(n) ando*(n) are the unitary analogs af(n) and
o(n), defined byg*(pF) = p* — 1 ando*(p*) = p* 4 1 [6], andv(n) is Dedekind’s function, defined
by ¥ (p*) = p* + p*~1. Now consider, for fixed: # 0, the function defined by (p*) = (p + a)* for
p > po:=min{p:p+a>2}andf(p*) = (po +a)* for p < py. Then the range of is the multiplicative
semigroup generated by the shifted prippes a forp > 1 — a.

Corollary 15. For a fixed nozerai, let V(@ (z) be the counting function of the multiplicative semigroup
generated by the shifted primés+ a : p+ a > 2}. Then

exp{C (logz = — log, z)> + Dloggz — (D + 1/2 — 2C) log, x}.

Vo (z) =, x
(z) log
One further theorem, Theorem 16, depends on the definition of therhamdal simplex, and is not stated
until Section 6.

Acknowledgement: The author is grateful to Paul Pollack for carefully proofreading oftla@uscript and
for catching a subtle error in the proof of the lower bound in Theorem 1.

2 Preliminary lemmata

Let P (n) denote the largest prime factor afand letQ(n, U, T) denote the total number of prime
factorsp of n such thaty < p < T, counted according to multiplicity. Constants implied by the Landau
O and Vinogradow and > symbols are absolute unless otherwise specified,cand, . .. will denote
absolute constants, not depending on any parameter. Symbols in bdigfadadicate vector quantities.

A small set of additional symbols will have constant meaning throughout #gerp These include the
constants, o, C, D, a;, defined respectively in (1.1), (1.4), (1.5), (1.6), and (1.3), as agthe constants
<1, Tr, g; andg;, defined in section 3. Also included are the following functions: the funstabefined
in (1.1), Lo(x) (1.7), F(z) (1.3); the functions)(«) and W (x) defined respectively in Lemma 2.1 and
(2.5) below; and”., (&), Tr.(§), Z1(&; ), Ri(&; ) andz;(n; x) defined in section 3. Other variables are
considered “local” and may change meaning from section to section,rarl&imma to lemma.

A crucial tool in the proofs of Theorems 1 and 2 is a more precise versithre sesult from [26] that for
most primesp, the larger prime factors gf — 1 are nicely distributed (see Lemma 2.6 below). We begin
with three basic lemmas.
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Lemma2.1.If z > 0and0 < a < 1 < gthen

Zk Zk
AR L S

k<az k>0z

whereQ(X) = [ logtdt = Alog(\) — A + 1.

Proof. We have
1\* 1\** (az)F e\ az _
—| <= Z) T = e(1-Q(e)2
<oz> D <a> Z oS (a) ¢ '

P (az)k
2 ' 2. !
The second inequality follows in the same way. d

k<az k<az

Lemma 2.2. The number of integens < z for whichQ2(n) > alog, z is
z(log )~ Q) l<a<?2
La 1—alog?2
z(logz)' ~*°¢<logox a = 2.
Proof. This can be deduced from the Theorems in Chapter 0 of [20]. d

Lemma 2.3. The number of. < z divisible by a numbem > exp{(log, z)?} with P+ (m) < m?/ 1827 is
< z/log? x.

Proof. Let ¥(z,y) denote the number of integess = which have no prime factors y. For z large,
standard estimates ([23], Theorem 1.1 and Corollary 2.3) give

U(z, 2%/ 19827) <« 7 exp{—(logy 2 logz ) /3}
uniformly for z > exp{(log, z)?}. The lemma follows by partial summation. O
We also need basic sieve estimates ([19], Theorems 4.1, 4.2).
Lemma 2.4. Uniformly for1.9 < y < z < z, we have

logy
logz’

Lemma 2.5. Suppose:, . .., a; are positive integers antd, . . ., by, are integers such that

h
E= Hai H (aibj — a;b;) # 0.

i=1  1<i<j<h

{n<z:ipln = pg (A} <a

Then

z(log, (| E| + 10))"
(logz)f
Next, we examine the normal multiplicative structure of shifted pripmesl.

#{n<x:an+bprime(l1<i<h)} <

Definition 1. WhenS > 2, a primep is said to beS-normal if
(2.1) Qp—-1,1,5) < 2logy S
and, for every pair of real numbef&/,7) with S < U < T < p — 1, we have
(2.2) Qp — 1,U,T) — (logy T — logy U)| < /logy Slogy T.
We remark that (2.1) and (2.2) imply that for &mnormal primep > S,
(2.3) Qp — 1) < 3logy p.
This definition is slightly weaker than, and also simpler than, the definitidfrwdrmal given in [14].
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Lemma 2.6. Uniformly forz > 3 and.S > 2, the number of primeg < = which are notS-normal is

1 5
Hf( 082 x) (10gS)_1/6.
log

Proof. Assumez is sufficiently large and > 1og!°? z, otherwise the lemma is trivial. Also, Ibg S >

(log ), then (2.1) implies that the number @fn question is
Q(n)—2log, S 3/2
<oy ) : (log 2) G

n < m(log S)2log(3/2) < (log z)(log S)0-3"

n<e
Next, assumdog S < (log x)%. By Lemmas 2.2 and 2.3, the number of primes z with eitherp < /z,
q:=Pt(p—1) < 2?2 Q(p—1) > 10log, = or p — 1 divisible by the square of a prime S, is
O(z/log? z). Let p be a prime not in these categories, which is alsoSrabrmal. Writep — 1 = ¢b. By
(2.1) and (2.2), either (§2(b, 1, S) > 2logy S—1 or (ii) forsomeS < U < T < z, |Q2(b, U, T) — (logy T —
logy U)| = +/logy Slogy, T — 1. By Lemma 2.5, for each, the number of; is

a:2 < x(log22x)3.

¢(b) log*(x/b) blog” x
If S < z, the sum ofl /b overb satisfying (i) is

1 1 logz (3! 2" (3/2))
< il — et 7
<X a0 ) 2

PHH)<S  S<p<e (v)<s
Q') >2log, S—1

< (log ) (log S)1/2721863/2) « (log z)(log S) %3,
and otherwise the sum is
Z 1 - <3>1—2log25' Z (3/2)Q(b') - (log z)3/2 log z |
b (log S)2log(3/2) (log 5)0.3

u
b <z
Q(b')>21log, S—1

<

<

2

v <e

Considen satisfying (ii). In particularS < x. For positive integers, let¢, = e¢". For some integers
Jj, k satisfyinglog, S — 1 < j < k < logy x + 1, we have
(2.4) b, tj,tk) — (k=7 + 1) =/ (k—1)logy S —4,
for otherwise ift; < U < tj11 andty, < T < tyq, thenQ(b, tj1,t,) < QO,U,T) < Q(b, t), tky1),
implying (2.2). Now fixj, k and leth = \/(k — 1) log, S — 4. For any integet > 0,

(R ol R

Q(b,t,tx )=l p<t; tp<p<z T\t <p<ty

Summing ovetl — (k — j + 1)| > h using Lemma 2.1, we see that for each gaitt), there are

z(logy 2)° _(e-jyo(s)
log

primes satisfying (ii), wherg = 1+#. Here we used the fact th@{(1 —\) > Q(1+ ) for0 < A < 1.

By the integral representation §f(z), we havel (1+\) > %log(1+>\). Also,h > 0.99,/klogy S > 990.
If h >k —j+1,then

<

h(k — j)log2 < hlog2 S log, S

(k= )Q(B) > G2 85 > TES 5 SRS,
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andifh <k —j+1, then

, (k — j)log2 h 2 h? log, S
_ > > > .
(k=5)QB) = 2 k—j+1 3k—j+1)° 4
As there are< (log, )2 choices for the paifj, k), the proof is complete. O

Lemma 2.7. There areO(*%2%) numbersn € ¥ (z) with eitherm or somen € ¢~!(m) divisible byd?
for somed > Y.

Proof. If ¢(n) < =, then from a standard estimate< zlogy z. Now ",y z/d* < z/Y. O

Our next result says roughly that most totients have a preimage whitimggmal for an appropriats,
and that neither the totient nor preimage has a large square factor oealargper of prime factors.

Definition 2. A totientm is said to beS-nice if
(@) Q(m) < 5logym,
(b) d?|m or d?|n for somen € ¢~ (m) impliesd < S*/2,
(c) forall n € ¢~ (m), n is divisible only byS-normal primes.

Now let

V(y)l
(2.5) W(z) = max M.
AT Yy

Lemma 2.8. Uniformly forz > 3 and2 < S < x, the number ofn € ¥ (x) which are notS-nice is

T T )(10gy T 6
o < W 1())252 ) (log S)—l/ﬁ) _

Proof. We may suppos& > exp{(log, z)3¢}, for otherwise the lemma is trivial. By Lemmas 2.2 and
2.7, the number of totients failing (a) or failing (b) @(z/log® ). Suppose is a prime divisor ofn for
somen € ¢~ t(m). If n = n/p then eitherp(n) = (p — 1)p(n’) or ¢(n) = po(n'), so in either case
¢(n') < z/(p—1). Let G(t) denote the number of primes< ¢ which are notS-normal. By Lemma 2.6,
the number ofn failing (c) is at most

oy (1) w3 el )

— 1) log(z/p)
/2 G(t)dt W (z)(logy x)° .
_ /6
< zW(x) /2 log(x/1) < log 7 (log S) : O

3 The fundamental simplex

For a natural numbet, write n = q1q2 - - -, whereg; > g2 > - -+, ¢; are prime fori < Q(n) andg; = 1
fori > Q(n). For. C [0,1])%, letZ(.7;y) denote the set of integerswith Q(n) < L and

<max(0, logs qi) max(0, log, qL)> c

logyy 777 logyy
wheremax(0, log, 1) is defined to be 0. Also set
1
(3.1) Ri(S5y)= ), -

¢(n)

neZL(S;y)
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Heuristically, Rr,(.; x) ~ (logy y)” Vol(.). Our result in this direction relate’; (.#; y) to the volume
of perturbations of”. Specifically, letting¥ + v denote the translation g by the vectow, fore > 0 let

ge= | F+v), 7= [ F+v).

ve[—e,ell ve[—eell
Lemma 3.1. Lety > 2000, ¢ = 1/log, y and suppose” C {x e R¥ : 0 <z < --- < 27 < 1}. Then

(log, ) Vol (#7%) < Rp(S;y) < (log, y)E Vol (Y+€) .

Proof. For positive integersn;, ..., mr, let B(m) = Hle[(mi — 1)e,me). If A is the set of boxes

B(m) entirely contained in#, then the union of these boxes contai#s . Moreover, for each box,
mi >mg > ... >my > 1. Form > 1, there is at least one prime i), := [exp(e™ 1), exp(e™)), thus

znzpil

YeBi=1 m;—1<logy p<m;

= Z Hmax (exp{—€™},1 4+ O(e™)) > || > (logy y)" Vol (9.
B(m)e#i=1
For the second part, supposéis nonempty and le® be the set of boxeB(m) which intersect?, so that
their union is contained i *¢. For B(m) € %, let j,, = |{i : m; = m}|. Then

. 1
Z HUmjm U(m,j) = Z S T);

B(m)e#m>1 <<y i€l

) <

Here eachr; is prime, except that when = 0we allowr; = 1also. We havé/(0, j) < > p+ (<13 1/9
1. Now supposen > 1 and letj = j,,. For eachr,...,r;, writery ---7; = kh, where(k, h) = 1,
squarefree and is squarefull. Also lef = w(k). Setting

1 1
tm= Y.  —  Sm=Y ——=1+0("),
h squarefull qb(h) p= 1

plh = p€ln

(n
kis

we have

U(m, j) <

sl st
T n +tpe’™ <1+ O(efm).
J:

We conclude that
Z H (1+0(e™)) < |8 < (logy y)L Vol (.7 7). O
(m) m21

Supposé&; > 0for0 < i < L— 1. Recall (1.3) and let’; (¢) be the set ofzy, . .., z) € R satisfying
(Io) a1ry + agwy + - +apxry < o,
(I1) a1ry +agr3 + -+ +ap1ryp < 11,

(Ir—2) a1xr—1 + agxrp < 2% 2,
(Ir—1) 0< 2 <&p17L-1
and let.77,(§) be the subset of”; () satisfying0 < z7, < --- < 21 < 1. Define
T7(8) = Vol(L(8)),  TwL(§) = Vol(FL(§))-



12 KEVIN FORD
For convenience, let = (1,1,...,1), 7 = .77(1) (the “fundamental simplex”Y[', = Vol(.77.), ./} =
<1 (1), andT; = Vol(.77). We first relate7,(§) to ... The next lemma is trivial.

Lemma 3.2. If & > 1 for all 4, andx € .77 (§), theny € .71, wherey; = (& ---& 1) 'a. f0 < & < 1
forall : andy € .77, thenx € .71(§), wherex; = (& - - - &i—1)Yi-

Corollary 3.3. DefineH (&) = ¢helt- €2 ¢ 1. We havel, < Tr(€) < H(€)Ty, wheng; > 1 for all
i,and H(&)Ty < Tr(&) < Tp when0 < & < 1 for all 4.

In applications H (&) will be close to 1, so we concentrate on bounding

Lemma 3.4. We have
L(L+3)/2

L

Y

Tp =T = (F'(0))".

Corollary 3.5. If H(&) < 1, then
L(L+3)/2

TL(€) = T(8) = S (F'(e)".

Furthermore, ifL = 2C(logs « — log, #) — ¥, where0 < ¥ < /log =, then
(logy )T (€) = exp{C(logs x — log, x)? + Dlogsx — (D +1/2 — 2C) log, =
—W2/4C — (D/2C —1)¥ + O(1)}.
If L =[2C(logsx —log, z)] — ¥ > 0, then
(logy )T (€) < exp{C(logs x — log, z)? + Dlogz x — (D + 1/2 — 2C) log, =
—W2/4C — (D/2C — 1)V},
Proof. The second and third parts follow from (1.5), (1.6) and Stirling’s formula. O

To prove Lemma 3.4, we first give a variant of a standard formula for henve of tetrahedra, then an
asymptotic for a sequence which arises in the proof.

Lemma 3.6. Supposerg, vi, ..., vy, € R, anyL of which are linearly independent, and
L

(3.2) vo+ Y bivi =0,
i=1

whereb; > 0 for everyi. Also suppose > 0. The volumeY}/, of the simplex
{(xeRl:v; - x<0(1<i<L),vo-x<a}

is
V= ot .
L!(blbg cee bL)‘ det(vl, - ,VL)|
Proof. We may assume that = b, = by = --- = by, = 1, for the general case follows by suitably scaling
the vectorsv;. The vertices of the simplex afep4, - - - , pr, wherep; satisfies
pi-v;i=0 (1<j<L,j#1i);
pi-vo=1.

Taking the dot product gb; with each side of (3.2) yielde; - p; = —1, sop; lies in the region{v; - x < 0}.
Also, 0 lies in the half-planesy - x < «a. The given region is thus ab-dimensional “hyper-tetrahedron”
with volume|det(p1,--- ,pr)|/L!, and(p1,--- ,pr)(v1, -+ ,vr)T = —I, wherel is the identity matrix.
Taking determinants gives the lemma. O
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Having 2L — 2 inequalities defining”, creates complications estimatify, so we devise a scheme
where onlyL + 1 inequalities are considered at a time, thus allowing the use of Lemma 3.6. Thersumb
b; occurring in that lemma will come from the sequedge}, defined by

(3.3) go =1, 9i = Zajgi—j (1>=1).
j=1

Lemma 3.7. For everyi > 1, |g; — Ao~ '| < 5, where\ = @F+(9)'

Proof. Write 1 — F(z) = (1 — z/0)l(z) andl(z) = Y7, 1,2". By (1.4),

o (1S ) = Y20
k=1 k=1
Next consider(z) = (1 — 2)%1(z) = Yo%, kn2". We havekg = 1,k =1; —2=p ' —a; —2 < 0and

00
kn =1, —2lp1+ 12 = Z Qk (an—l-k —2ap 451+ an+k—2) <0 (n = 2)
k=1

Also, k, = O(1/n?), and)_, -, k, = —1. Thus,k(2) is analytic for|z| < 1, continuous onz| < 1, and
nonzero forz| < 1,z # 1. Further,

Re(z) > 1+ kiRz — (14 k1) = |k R — 2),
so that for|z| < 1,

‘ L] 11— 2|? 1 |1 — 22 2 e
— S < ——maxX = — .
()] kRO =2) = [ka] =1 R(L=2) [k
Now let
S i 1 A 1/i(z) = 1/(e)
= n—)\ ? n = —_ = .
e(z) T;J(g Nk 1-F(z) 1-z/o 1-=z2/o0

From the preceding arguments, we see ttaj is analytic for|z| < 1 and continuous ofz| < 1. By the
maximum modulus principlenax,—; [e(z)| < (3.7 + A)/[1/0 — 1] < 5. By Cauchy’s integral formula,
the Taylor coefficients of(z) are all bounded by 5 in absolute value. O

Remarkl. The above proof is based on [17], and is much simpler than the originaf gieen in [14].
With more work, one can show that foe> 1, the numberg; — Ao~* are negative, increasing and have sum
~1+M/(1—p)=-0.2938...

Proof of Lemma 3.4The basic idea is tha¥’; is only slightly larger than”7,. In other words, the inequal-
ities1 > x1 > --- > x_1 are relatively insignificant. Set

@/ozygﬂ{l‘l>1}, %:ygﬂ{$i<xi+1} (1<i<L—2)
andV; = Vol(%;). Evidently

L—2
(3.4) T} - Y Vi<Tr <Tj.
=0
Letey,--- , ey, denote the standard basis #f, i.e.e; - x = z;. Forl <i < L — 2, set

L—i
(35) vV, = —e€; + Z a;€4j
j=1
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and also
L
Vg = Zajej, Vi1 =—€er_1+ter, vV = —ey,.
j=1
For convenience, define

(3.6) =1 g =g+1-a)g1 (E=1).

Thus, forl < j < L — 2, inequality ¢;) may be abbreviated as; - x < 0. Also, inequality (o) is
equivalenttovy-x < 1and (1) isrepresented by, _;-x < 0andvy -x < 0. By (3.3), (3.5) and (3.6),

L1
(3.7) € =—> gjiVj—gi VL.
j=i
It follows that
L-1
(3.8) vo + Zngj +g7vr =0.

j=1
Since| det(vy,---,vy)| = 1, Lemma 3.6 and (3.8) give
B 1
Ll(g1 - -gL_l)gz'
Lemma 3.7 now implies the claimed estimate1gr.
For the remaining argument, assumés sufficiently large. We shall show that
L—2
(3.10) D Vi <0.61T7,
i=0
which, combined with (3.4), (3.9) and Lemma 3.7, proves Lemma 3.4.
Combiningz; > 1 with vg - x < 1 givesu - x < 0, whereu = vy — e;. By (3.7) and (3.8),

(3.9) T}

L-1
u="> (91— 9;)vj+ (951 — g5V
j=1
Thus
aj L
vo + 1 u+ijvj =0,
aj =2
where
ai .
bj=gj+m(9j—gj—1) 2<ji<L-1),
b =91+ 1—a (97 — 91-1)-

Lemma 3.7 implie$; > (9/7)g; for largej, In addition,| det(u, vo,...,vy)| = (1 — a;). By Lemma 3.6,

1

7 L
3.11 Vo —t (L) 1
(3.11) O Tiloabs - bp) & <9) L

We next show that

1 Lt 1 1
(3.12) Vi = ( )
(I —a1)LXg1---gi-1)AiB; jI}FQ 9; + Bihj_; ) g7 + Bih} _,
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where

A= gi + Ji+1 . B = gi+1
1—(11 1—@1

In %; we have (;) andz; < x;11, hence

, hi=g—gi—1, h =h+1—-a)h_.

Tip1 = (aoxiyo + - +ap—ixr) = Tigo + a2xiy3 + - +ar—i17L.
1

1—a
The conditionv;.; - x < 0 is therefore implied by the other inequalities defini#xg which means
Vi=Vol{vg - x<1L;v; - x<0(1<j<L,j#i+1); (e —eiy1) x <0}

We note| det(vy, -, v, € — €41, Vito, - ,vp)| = (1 —aq). Itis also easy to show from (3.8) that
1—1

0—V0+Zg]V]+AvZ+B —€ei+1) vaj,
Jj=1 j=i+2

whereb; = g; + B;hj_; fori+2 < j < L —1, andb;, = g7 + B;h}_,. An application of Lemma 3.6
completes the proof of (3.12).

We now deduce numerical estimates 1¢y7;. Using Lemma 3.7, plus explicit computation @ffor
smalli, givesA; > 4 for all i and

g; + Bihj_; > 1.44g; (i large, sayi > L — 100),
9j + Bihj—i > 1.16g; (1 =1, >1i+2),
g; + Bihj _; > 1.444g; (i< L—2),
g1, + Br—2hi > 1.19¢] .
From these bounds, plus (3.9) and (3.12), it follows that
Vi_o/TF < (4-1.19)71

Vi/TF < (4-1.4477H71 (L -99<i<L—-3),
Vi)TF < (4-1.44% 11657710971 (1 <4 < L —100)
Combining these bounds with (3.11) yields
L—2
1 1.4472 1.447%9
T 4 61
ZV/L<O(( /5 + <119+1—1.441+(1—1/1.16)><06’

which implies (3.10). This completes the proof of Lemma 3.4. d

Important in the study of”7, and.”} are both global bounds on the numbeyggiven below) as well as
a determination of where “most” of the volume lies (given below in Lemma 3.10 3eg}io

Lemma 3.8. Letzy = 1. If x € .77, thenz; > gj_;z; for0 <i < j < L. If x € 7, (§) and§; > 1 for all
i,thenz; < 4.771& - &j_10 'z, for0 < i < j < L.

Proof. Fix ¢ and note that the firstinequality is trivial fgr= i. Assumek < i—2 and it holds forj > k+1.
Then by () and the induction hypothesis,

i~k
k2 Z AhThth 2 Zahgi—k—hfm = Yi—kTi-
= h=1

By Lemma 3.7, the maximum @f /g, is 4.7709 . . ., occurring at = 2. The second inequality follows by
Lemma 3.2. g
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Careful analysis of?7, reveals that most of the volume occurs with ~ L i o' for eachi, with the
“standard deviation” from the mean increasing witfrhis observation plays an |mportant role in subsequent
arguments. For now, we restrict our attention to the variallewhich will be useful in estimating sums
over numbersq, whoseL largest prime factors lie in a specific set, and whose other prime factors are
unconstrained. Results concerning the size;dbr i < L will not be needed until section 6.

Lemma 3.9.LetL > 3, a« > 2¢ > 0 and§; > 1 foreachi. If x € [Z/(&) N{zr > a}|™, then
y € S N{yr > '}, whered = (a —¢)/(§y--€7_1), &1 =3&—1andforl <i< L —2,

& & a/e
Proof. By assumption, for some’ € .} (§) with 2, > «, |x; — 2} < ¢ for all i. By Lemma 3.8,
! Qz Lyt Qi—La .
Tz —e> > L > i <L—1).
T 2 0, T W06 )

Hence, by([;), if i < L — 2 then
I

L—i i
Zajxi+j < aj($;+j+5) é{ix;—ke(al—k-”%—aL,i)
J=1 J=1

<&l telar +-+ap—y)) < &,

Lastly,
x> —e> &t o —e > max(e, vy, — 2¢) > L ";UL _
3§L71 £L71
This shows thak € .7} (¢) andz;, > « — e. Finally, by Lemma 3.2y € .} andy;, > o', O

The next lemma shows that, ~ ¢ /L for most of.77, significantly smaller than the global upper bound
given by Lemma 3.8.

Lemma 3.10. (i) If « > 0, then
Vol(.ZF N{zy, < a}) < TraLe™*

and
Vol(f N{zp > a}) < e *LorTy

(i) If & >0,& > 1foreachi, H(¢) < 2ande < 100"/, then

Vol([.77 (&) N{z > a}]™%) < e —Coalgrp,
for some absolute consta@t > 0.
Proof. Consider firstx € ./} N {z; < a}. Since(zy,...,z1-1) € _,, the volume is< o7} ;.
Applying Lemma 3.4 gives the first part of (i). Next, suppese ./} N {z; > a}. If a > 1/g, the
volume is zero by Lemma 3.8. Otherwise, get= x; — agr_; for eachi. We havey; 1 > yr > 0,
vy <0forl1 <j<L-2andvy-y <1-agr. By Lemmas 3.4 and 3.6, the volume of suchs

< (1 —agr)tTy < (1 — agr)ETyL. The second part of (i) now follows.
For (ii), first supposer > 2¢. By Lemma 3.9, Corollary 3.3 and part (i),

Vol([.77(€) N {zr > a}]™%) < H(&) Vol(} N {yL > o'}) < Tpe *Hor,
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wherec’ is defined in Lemma 3.9. Sindé(£) < 2, H(¢') < 1 and hence/’ >> a. Next, assumer < 2¢.
Without loss of generality suppose= 0, sincee=2%9. > 1 by Lemma 3.7, (3.6) and the assumed upper
bound ore. Forx in question, let- = max{i < L : x; > 2¢}. Using Lemma 3.4 and part (i),

L
Vol([77(&) N {zr = a}]™) < D (26)" 7" Vol (7 (&0, -+ &-1)))
r=0

L h
T 2e L0~ L
<<TL§(2€)h<Lh><TL§ ( 2 ) < T 0
h=0

4  The upper bound for V' (x)

In this section, we prove that
xZ(x)
logz
We begin with the basic tools needed for the proof, which show immediately thdicignce of the set
71,(€). First, recall the definition of ag-normal prime (2.1)—(2.2). Also, factor each positive integer

41) V)<< Z(z) = exp{C(logg x — log, z)? + D(logz z) — (D + 1/2 — 2C) log, x}.

n=qo(n)gi(n) -, qo(n) =aqmn)=---,
¢i(n) is prime fori < Q(n) andg;(n) = 1 fori > Q(n). Define
(4.2) zi(n; z) = max(0, logy g;(n))
log, x

Lemma 4.1. Suppose is sufficiently largek > 2 and
log2 S
logyy’

whereS > exp{(log, y)*°}. Letlog, E; = 0;log, y for each;. The number of-nice totientsy < y with
a pre-image satisfying

120> 26 >

gj(n) > E; (I<j<k)

is
Yy
< y(logy)* 5 (log, ) (log S)F1°sF + (log )%’
where
k
log2 1/2
— a 0 9 B = 0 j log ]
; 3V log, y Z

Proof. Let F' = min(FEy,y"/(0°¥) E, | = S, andf,,; = log, S/log,y. Letm be the part ofv
composed of primes S, F]. Thenm < F") < y!/2. By Lemma 2.4, the number of totients with a
givenm is

y logS

mlog B S (logy)ek+1 % (logy ).

Let

~ /logy Slogy Ej—y
logy y
for eachj. Since the primes;(n) areS-normal, by (2.2)

Q(m,Ej,Ej_l) = j(@j_l - 9]' - (5]) IOng = Rj (2 <J < k+ 1).

J
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Therefore, the total numbel, of totients counted satisfies

k1 i

N < y(logy)™+ " (logyy) [T D 2
J=2r=2R;

where

tj = Z

Ej<p<Ej_1

Sj<1.<1+35j)
R; "] 0j—1— 0,

< (Gj_l - Hj)logzy +1:= Sj.

D=

If (5j < %(Qj_l — 0]'), then

and Lemma 2.1 implies

s” es.; Rj X .

Z T (=2 < (log y)J(ejfl*ej*53')(1*10gj+35j/(9j71*‘9j))
r! R;

r>R;

< (log y)V—71083)(05-1=0;)+(5log j+27)d;
If 5; > $(6;-1 — 0;), then the sum on is
< €% < e(logy)U—7108N)(0;-1-0;)+(2]log )5;

Therefore,
N < y(logy)***(log, y) (log &) ¥+ 1) st =k ek,
]

Lemma 4.2. Recall definitiong1.3). Supposé > 2,0 < w < 1/10 andy is sufficiently large (say > o).
Then the number of totients< y with a pre-imagen satisfying

arzi(nyy) + - +apzr(niy) > 1+ w

—1-w? 3 1o
< y(logy y)°W (y) (log y) 1~/ (600K log k)

Proof. Assume that

1
(4.3) w? > 360083 k3100 &,
logy y
for otherwise the lemma is trivial. Defing by
w2
4.4 logy S = —————1
( ) Og2 100k3 log k 0g2 y7

sothatS > exp{(log, y)3¢}. LetU(y) denote the number of totients in question whichgeice. By (4.4)
and Lemma 2.8, the number of totients not counted’y) is

y(logy )W (y)
logy

Lete = w/10, « = a1 + - - - + a < klog k, and suppose is a pre-image of a totient countedif(y). Let
x; = x;(nyy) for 1 < i@ < k. Then there are numbefs, . .., 0, so thatd; < x; for eachi, eachd; is an
integral multiple ofz /o, 61 > - - - > 0, and

1
< (log 5’)_1/6 + &523/ < y(log, y)GW(y)(log y)—l—«u?/(GOOk3 log k)

(4.5) l4w—e<ab1+ +apbpe <1+ w.
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For each admissible-tuple 8, let 7'(8; y) denote the number of totients countedifly) which have some
pre-imagen satisfyingz;(n;y) > 6; for 1 < i < k. Letj be the largest index with; > log, S/ log, y. By
Lemma 4.1,

T(6;y) < y(logy)**” (logy y)(log 5)*18* + y(logy) 2,
where, by (4.5),
Z a;if < —(1+0.9w) + 1 logy S
“logy
and, by (4.4), (4.5) and the Cauchy-Schwartz inequality,

1/2
2 3 1/2
B<4 logy S (1+w Z] log? j <6(16 logklog25’> < 3w‘

10g2y = -1 logy y 5

Also
(log S)2klogk (log y)* w?/(50k?) < (log y)w/2ooo.
Using (4.3), the number of vecto#sis trivially at most
a\k 10k log k\ ; )
(;) < <w> < (logy )" < (log y)**/3900 < (log 1/)*/30000.

Therefore,
ZT y) < y(logy) /4,

which finishes the proof. 0

Before proceeding with the main argument, we prove a crude upper fouidz) to get things started
using the method of Pomerance [29]. For a laggket 2/ < = be such thal/(z') = /W (z)/log .
Let v < 2’ be a totient with pre-image. By Lemma 2.7, the number af with p?|n for some prime
p > eVe® is O(2'/log2’). By Lemma 4.2, the number afwith a;z1(n;2") 4+ agwa(n;z’) > 1.01is
O(z'W (2")(log 2')~1=¢) for somec > 0. On the other hand, ifi;z1(n;2') + azr2(n;2’) < 1.01, then
xo(n;2’) < 0.8. Writev = gZ)(qoql)m so thatm < exp{(log 2')98}, p2 ¥ n andp? { n. Therefore,

Z Z (@1 — )m < (logy )W (exp{(log z)*%}).

W(x )<<1+

Iterating this inequality yields
(4.6) W(x) < exp{9(logs z)?}.

Lemma 4.3. We have

Z % < W (y'°82Y) logy y < exp{10(logz y)?}.
veEY
Pt (v)<y
Proof. Let f(z) denote the number of totients< z with P*(v) < y, and set) = '°%2¥. First suppose
z >y Ifv > 22 thenPt(v) < v¥ 19829 so Lemma 2.3 give§(z) < z/log?z. Forz < y/,
use the trivial bound'(z) < V(z). The lemma follows fromog, v’ = log, y + logs y, (4.6) and partial
summation. O
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Proof of (4.1). Let L = Lo(z) and for0 <i < L — 1, let

1 L—i
4.7 . — —
4.7) Wi = 15000 exp{ 0 } & + wj

ThenH (&) < 1.1. Letw be a generic totient « with a pre-imager satisfyingn > z/logx andQ(n) <
10log, x, and setr; = x;(n; z) andg; = ¢;(n) fori > 0. By Lemma 2.2,

V() <LZ2Mj<x>+N<x>+o< =),

= log x

whereM;(x) denotes the number of such totiertse with a pre-image satisfying inequality;§ for i <

J but not satisfying inequality{), and N (z) denotes the number of such totients with every pre-image
satisfyingx € .77, (£). By Lemma 4.2 (withv = wg) and (4.6),My(z) < z/log z. Now supposé < j <

L —2,and sek = L — j. Letn be a pre-image of a totient counted/ify (x), and setw = ¢;qj+1--- ,m =
#(w). Since (o) holds,zy < &/(ay + az) < 0.9. It follows thatgy > x'/3, whencem < z%/3. By the
definition of M;(x) and (4.7),

z; <& N awjin + agmjo+ ) < & (axs + agmja + ) <@y,
whenceg;—1 > ¢; andg(n) = ¢(qo - - - ¢j—1)m. For eachn, the number of choices fap, ..., gj—1 is

<

mlongjfl(tgﬂjfl(é.O) cee 7£j73); l’),
where we set?, = {0}, .1 = [0,1] and. = [0,1]%. Let f(y) be the number ofn < y. DefineY; by
logs Y; = k/20 + 1000. Sincem is a totient, we have(y) < V(y), but wheny > Y; we can do much
better. First note thaty < ylog,y. By Lemma 2.3, the number of suehwith Pt (w) < y'/1°827 is
O(y/(logy)?). Otherwise, we havg; = P*(w) > y'/1°¢2¥ and

o logy y — logs y S logy y 1 k/20 + 1000
iz log, z ” logy z ¢k /20+1000

ForO < <k, let
_ logyx

Z = wi(w;y) = @

Litj-
Since () fails andy > Y7, it follows that

log, x
logy y

aizr + -+ apzg 2 (I +wj)zj = (1+w;/2).

By Lemma 4.2 and (4.6), when> max(yo, Y;) we have

1) < YW W)ogs y)° exp { Wy y

S R | - 4
logy 600k3 log k 082 y} < log y(logQ y)2 ‘

By partial summation and Lemma 4.3,

1 1
— <1 — < W(Y;)log, Y; k2/40 + O(k)Y.
) — <1+ ) — < W(Yj)log, Yj < exp{k”/40 + O(k)}
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Therefore, by Lemma 3.1, Corollary 3.5 (with= £ + 1) and Lemma 3.10 (ii) withx = 0,
x
M;(z) < @Rj—l(y}—l(fo, -5 &io1); ) exp{k? 40}

(4.8) < é i1(logy ) ™! exp{k?/40}
< 1023; exp{—k2/4 — (D +1)/2C — D)k} Z(x).
Thus
L—1
(4.9) ;M]( T) < 1ngZ(ac).

Next, suppose is a pre-image of a totient counted/N(z). By Lemma 3.8z, < 50% 20 1°g3 T fbis
a nonnegative integer, 1&f,(z) be the number of totients countedN(z) with a pre- |magm > a:/ log? =
satisfyingb/logs < 2z < (b+1)/logyx. Letw = qr41--- andqg = ¢1 - - - qrw. Sincexy < 0.9 we
haveq < 2%/3. As ¢(q) > ¢(q1 - - - q1.)(w), for a fixedq the number of possibilities fay, is
x 1 T 1
< < , v =o¢(w).
logz ¢(q) ~ logz ¢(q1---qr)v )
By Lemma 3.1 and Lemma 3.10 (ii),
2 S
By Lemma 4.3 and (4.6} 1 < exp{10log? b}. Combining these estimates gives

< Rp(Z1(&) N{zp = b/logy x}i2) < Z(z)e Cob/4,

(4.10) Ny(z) < %Z(@«) exp{—Cob/4 + 10log? b}.
Summing orb givesN (z) < 10"gch(sc), which together with (4.9) gives (4.1). O

5 The lower bound for V(z)

Our lower bound forV,;(x) is obtained by constructing a set of numbers with multiplicative structure
similar to the numbers counted BY(x) in the upper bound argument. At the core is the following estimate,
which is proved using the lower bound method from [26].

Lemma 5.1. Lety be large,k > eI K <uUpq <Vl < Upo < - <uy < v =Y, 01 <

yt/10logay 1> 0,1 < r < yl/lo (5 = \/logQ S/logyy. Setv; = logyvj/logy y andp; = log, uj/logy y
for eachj. Suppose also that;_; —v; > 26 for2 < j < k, 1 < d < ¥/ and P*(d) < vy. The number
of solutions of

(5.1) po—1)-(Pr—1—1)f1--- fid = (g0 —1) - (qu—1 — 1)e < y/r,

in PO, - - -y Pk—1, fl, Ce ,fl, q0,---,Qk—1,€ satisfying
(1) p; andg; are S-normal primes, neithep; — 1 nor ¢; — 1 is divisible byr? for a primer > vy;
(2) pi #qiandu; < PT(p; — 1), Pt (q; — 1) < vy for0<i < kb —1;
(3) PT(efi - fi) < v Qfi) < 10log, vy for all 4;
(4) po — 1 has a divisor=> y'/2 which is composed of primes v:;

k—
< %(04 logy ) (k + 1)@ (log vy,) 20K+D108K+D+1 (1o 1)) =2+ aivit B

wherec, is a positive constant anfl = 6 >-% _, (ilogi + i) + 2 X0 v — ).
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Proof. We consider separately the prime factors of each shifted prime lying in ethah(v;, v;1]. For
0<j<k—1land0 <i<k,let

k-1 k-1
a / a /
sig) =" [T o sigm="1[ »  si=dfi-fi]]s=c]]sis
p*ll(p;—1) p*[l(g;—1) j=0 §=0
PLY; PY;

Also, for0 < j <k —1andl <i <k, let

!/

s s k—1 k—1

_ iilvj / _ ifl:j _ _ /

tig=——" tiy=—g7 L= [Tti=11%
b 4] =0 =0

For each solutior? = (po, ..., pk—1s f1s-- -+ f1,40, - - qr—1,€) Of (5.1), let

0i( ) = {55810+ Sik—15 f15- -, J15 8505 - -5 St 15 €}

Ti() = {tistio, - tig—1, 1, Lty oot g, 1)
Defining multiplication of(2k + [ + 2)-tuples by component-wise multiplication, we have
(5.2) oi—1() = oi(A)1i().

Let &; denote the set of;(.<) arising from solutions# of (5.36) ands; the corresponding set of(.</).
By (5.2), the number of solutions of (5.1) satisfying the required condii®ns

(5.3) Sl = > > L

oceG; T€ET
oTeS)

We will apply an iterative procedure based on the identity

1 1 1
54) Z 31’—1:237‘ Z ti

0i—1€6;_1 0, €6; TET; ¢
0T €ES; 1

First, fixo; € &;. By assumption (4) in the lemma, o > y'/2. Also,t; =t = tho <y/(rsi),tiis
composed of primes vy, and alsos gt + 1 ands’ljotl + 1 are different primes. Write; = ¢,Q, where
Q = P™(t1). Sincepy — 1 is anS-normal primeQ > tim(tl) > y1/6l0g29 by (2.3). Givent!, Lemma 2.5
implies that the number @ is O(y(logy )%/ (rs1t; log® y)). Using Lemma 2.4 to bound the sumioft/,
we have for each; € &4,

y(log, y)6
55 E 1l ———===—
( ) T1ES] TSl(lOg y)2+V1
o111E€S)

Next, suppose < i < k,0; € 6;, 1; € T; ando;7; € &;_1. By assumption (2),

/ !/
ti=tio- -t =l by

In addition,s; ;_1t;;—1 + 1 = pi—1 and.sgﬂ._lt;,i_1 + 1 = g;_; are different primes. Lef); = P*(t;;-1),

Q2=PF(t;; 1), b="t;1/Qrandt =1, ,/Q>.
We consider separatefy; ;, the set ofr; with Q1 = Q2 and¥; », the set ofr; with Q1 # Q». First,

1 h(t) 1

Y= — < — —_—,

=), S ) o
€T 1 t Q1
0T €61
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whereh(t) denotes the number of solutions @ - - -t;;—2b = t = t},---t;; »V', and in the sum on
Q1, sii—16Q1 + 1 and sz,z_lb’Ql + 1 are unequal primes. By Lemma 2.5, the numbeef < z is
< z(log z)3(logy y)? uniformly in b, ', By partial summation,

> 7<< (logy y)* (log y) ~>#i-1.
Q1>“'L 1

Also, h(t) is at most the number of dual factorizationstaiito : factors each, i.eh(t) < ). By (2.2),
Q(t) < i(vie1 — v + 6)logy y =: I. Also, by assumption (1},is squarefree. Thus

h(t % HI
D D PRl

|
t j<t
where X
Z *S(Vi—l—vi)10g2y+1:: H.
v <pLVi—1 p
By assumptiony; 1 — v; > 26, hencel < 3iH < i*H. Applying Lemma 2.1 (withy < %) yields
h(t mi2\! .
(56) Zt: Sj) < (6[2) < (ei)I — (log y)(l+7,10gl)(1/i71—1/i+6)‘
This gives

Y, < (10g2 y)S(log y)72ui71+(i+i logi)(ui,lfuﬂré).
For the sum ovef, », sett; = tQ1 Q2. Note that
tQ2 =tip -+ tii—2b, tQr =t ot b,
slethO . ~t;7i_2b’ andQq|t;o - - - t;,i—2b. If we fix the factors divisible by); and byQ,, then the number
of possible ways to formis < i2%**) as before. Then

Yo 1= Z t1i<

T€E%; 2
0iTi€6;—1

wheres; ;—1bQ1 + 1 and s“ b'Q2 + 1 are unequal primes. By Lemma 2.5, the numbeef < =
(respectivelyQ; < z) is < z(log 2)~2(log, y)2 By partial summation, we have

> Qle Z o Z g, < og y)*(log y) 2.

Q1,Q2

Combined with (5.6) this gives
Yy < i2(10g2 y)4(10g y)—Q,u,i_l—l—(i—i-ilogi)(ui_l—l/i—kcs)‘
By assumptioni? < k? < (log, y)2. Adding¥; and¥, shows that for each;,

1 —2p; ilogi41)(vi—1—vi
®.7) Y. o < (logyy)°(logy) Hi-rHtoerrilvi vt

T, €%; v
0T €61

Using (5.3) and (5.4) together with the inequalities (5.5) and (5.7), the nlmhlsetutions of (5.1) is

< Lealogy ) (logy) > Eats i)z §7 L

2
1
XD 5
bY g, 9162

oLES

wherec, is some positive constant. Note that the exponerita@fy) is < —2 + Z 1 a;v; + E.
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It remains to treat the sum an,. Givens), = s;/d, the number of possibley, is at most the number of
factorizations ofs, into & + [ factors times the number of factorizationsdsf, into & + 1 factors, which is

at most(k + 1)) (k 4 1)x). By assumptions (1) and ((s},) < 10(k + 1) log, vy Thus,

Q(d) 20(k+1) logy v
s L (k)0 g

1 (k + 1)%@) (log vy, ) 20(k+D) log(k-+1)+1
sk d < :

— <L
s}, d
P+ (sp) <u

0

oLES

Lemmab5.2. If & =1 — w;, w; = m for each: < L — 2, then there is an absolute constai so

that whenevet < A < (logy)'/?, M = [M; + 2Clog A] and L < Lo(y) — M, we have
(5.8) R (S5 y) > (logyy) Ty,
where.” is the subset o/, (£) with the additional restrictions

A

(59) Ti+1 < (1 — wl-):ni (’L > 1), Xy, 2 .
logy

Proof. By Lemma 3.1,R.(.7;y) > (log, y)" Vol(.#%). For1 <i < L — 1, put

6(2 + (L —i)log(L — i)™

Let .7 be the subset of”(¢') with the additional restrictions; .1 < &z; for eachi andz;, > (200 +
A)/log, y. Suppose € .7 and|z] — x;| < ¢ for eachi. By Lemma 3.8,

. L—1 L—1
%>Q $L>Q (A+200).

> =
6 6logy y

/
€Z;

Thus, for0 <7< L —1,

2e
Tig S wip1 +e <z +e)+e< ( ;+$,> rh < &l
1
and
)+ +apwn < i +ela + - ap—;)
< &lap+e) +e(L+ (L —i)log(L — i) < &l

Thereforex’ € .7 and henceZ C .#~¢. Make the substitution; = (§,---&/_,)y; for 1 < < L. By
Lemma3.2y € ' := .7, N{yr > (A +200)/log, y}. By Lemma 3.10 (i), ifM; is large enough then

Vol(# %) > Vol(7) > H(&') Vol(T') > H(¢') [T, — O(AdMTy)] > Ty. O

Now we proceed to the lower bound argument for Theorems 1 and 2. Seigigd) = ~ and¢(d;) =
d (1 <14 < k). Assume throughout that > zy(d). The variablek is reserved as an index for certain
variables below. Define

(5.10) M = Ms + [(log d)'/°], M is a sufficiently large absolute constant
(5.11) L = Lo(z) — M,

1
(5.12) G=1-w, w=-—" (0<i<L-2)

~10(Lg —14)3
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Let # denote the set of integers= pop; - - - pr, > x°/19 with eachp; prime and

(5.13) ¢(n) < x/d,

(5.14) (w15 fd), - ,wp(niw/d)) € (),

(5.15) logapi > (1 +w;i)logepiyr  (0<i<L—1),
(5.16) pr = max(d + 2,17).

By Corollary 3.5 and Lemma 5.2 (with= z/d, A = logs max(d + 2, 17)),

X X
5.17 — q Lo ] Ly
Consider the equation
(5.18) do(n) = ¢(n1),
wheren € %. Letqy > ¢ > --- be the prime factors ofi, and forj > Q(n1), putg; = 1. If

n|ni, then none of the primeg (0 < ¢ < L) occur to a power greater than 1, for otherwise (5.16) gives
d(n1) = ¢(n)pr > ¢(n)d. Also, PT(d;) < pr, for all i. Thereforep(ny) = ¢(n1/n)éd(n) = ¢(n)d, which
impliesn; = nd; for somei. These we will call the trivial solutions to (5.18). We then ha\l@¢(n)) = «
for eachn € £ for which (5.18) has no non-trivial solutions, i.e. solutions with n;. In particular, for
suchn we havep(n') # ¢(n) for n’ # n andn’ € 2.

The numbers, which give rise to non-trivial solutions are grouped as follows. Fer j < L, let. %; be
the set ofn € % such that (5.18) holds for some with ¢; = p; (0 <7 < j —1) andp; # ¢;, and such that
(5.18) does not hold for any; with n 1 n; andg; = p; (0 < i < j). We then have

(5.19) > |8 - Z 5.

Forn € %; with j > 1, write n = ponang, whereny = pi---pj—1 andnsz = p;---pr. When
j =0, setng = n. If ¢j_1 = gj, thenp;_;|d¢(n3), which is impossible. Thereforg;_; > ¢; and
é(n1) = o(po---pj—1)é(g;---) and

(5.20) dg(n3) = ¢(na)

has a nontrivial solution (that is, withns { n4). In addition, all such solutions satisfy* (ny) # P™(n3).
Fix j and let«; be the set of suchs. It will be useful to associate a particulaf to eachnz € 7; as follows.
Letv = ¢(n3) for somens € <. If there is only one suchg, then taken, to be the smallest nontrivial
solution of (5.20). Otherwise, suppose there are exdctly 2 members ofe/;, nz; with ¢(ns;) = v
(1 <i < k). Take a permutation of {1, ..., k} with no fixed point and associatg = din3 (;) With ng ;.
Sincei # o (i), n3,; f na, SO the aSSOC|ated4 is a nontrivial solution of (5.20). In addition, distinet € <7}
are associated with distingf;.

For z large, (5.14) and (5.15) imply, > 2*/%. By the prime number theorem, for each fixeghs, the
number of choices fapy is O(x/(dp(nang)log z)). Hence

T 1 1 .
911 < Fiogz 2 5w 2= ngy ST <D)

Sinceny € Z;_1(7j—1;x) whenj > 2, Lemma 5.2 gives

1 .
> gy S lomay Ty (<G <L),

n2
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To attack the sum oms, let B;(y) denote the number of possible with ¢(n3) < y. In particular,
|%o| = Bo(z/d). Whenj > 1, by partial summation,

£(log, 2T, 1 Bj(y)
(5.21) 1Pl < == gz ( 2 dlny) 2 Y )

logs é(n3)<M/10 logs y>M/10 7

If M, is large enough, then

L—j+1
(5.22) 3 ¢(1113) < ( 3 1> < L=+ 1M/9.

-1
logs ¢(n3)<M/10 log, p<eM/1041 p

We will show below that

y
(5.23) Bily) €« ——>——
i) log y(logy y)?

In particular,|%y| = Bo(z/d) < z/(dlogx). Combining (5.23) with (5.10), (5.21), Corollary 3.5 and
(5.22), we obtain foy > 1,

(loggy = M /10,0 < j < L).

i . .
|%;| < m(logz x)! Ty exp{(L — j + 1)M/9}

< (logy )Ty exp{(L — j +1)(M/9 — M/2C — (L — j +1)/4C)}.

dlog x
Summing overj and using Corollary 3.5, (4.1), (5.17) and (5.19) gives

Vi(z) > ‘f' > d 7V (x).

This completes the proof of Theorem 2. The lower bound in Theorem MWslhy takingd = 1, x = 2.
We now prove (5.23). Foj < L — 2, p; < y, hence by (5.14),

logy pj+1 logy pr.
5.24 R (&, ... ~1)).
( ) ( IOgQ y ’ y 10g2 y € L—j ((6]7 ’ €L 1))

Thus, by Lemma 3.8 and (5.16) (and trivially wheee L — 1),

1 <logypr < 3QL_j logsy v,
which implies

(5.25) h:=w(ng)=L—j+1<2Clogszy+ 3.
Next define
(5.26) S = exp exp{ (logs y)'°}.

We remove from consideration thosg satisfying (i)ns < y/log?y, (i) p?|4(n3) for some prime
p > log?y, (iii) there is somen|ng with m > exp((logy y)?) and P+ (m) < m!/1°82¥; (iv) ns is divisible
by a prime which is notS-normal. If p?|¢(n3), then eithem?|n3 or ns is divisible by two primes= 1
(mod p). Thus, the number of3 satisfying (ii) is

2
(6] 2 (0] 2
< ¥ Liéﬂ/( 3 (11)]« 3 y(lﬁgy) < YUogyy)
)

log?
p>log?y q<y,q=1 (mod p p>log?y &Y

by the Brun-Titchmarsh inequality and partial summation. By Lemma 2.3, the nushbegrsatisfying (iii)
is O(y/log?y). By the Hardy-Ramanujan inequality [22], the number of integerswhich haveh — 1
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prime factors isO(t(logy t + O(1))"=2/((h — 2)!logt)) uniformly for b > 2. Thus, the number of
satisfying (iv) is

yexp(2(logz )?) y
< D <
= plog(2y/p) (logy)(logs )?
p not S:normal

by Lemma 2.6 and partial summation {it= L, thenh = 1 and we use Lemma 2.6 directly).
For the remainings, sincelog; y > M /10, by (5.10) we have

(5.27) logd < (101logs y)°.

Letny be the unique number associated with As ¢(ny) < dy, we haveny < y(logy)'/3. Now remove
from consideration thoses with (v) p?|n4 or p?|¢(n4) for some prime > log? y. The number of suchs

is O(y/log*?y). Also remove from consideration thoag such that (vin, is divisible by a prime which

is notS-normal. By the way we chosey, the only way this is possible is if; has a prime factor which is
not.S-normal, or ifg(n3) # ¢(ny) for nfy € o7, ny # ns. The first case is not possible, since by (5.27),
dy < dlogyd < log S, hence fop|dy, Q(p—1) < 2logp < 2logd; < log, S+ O(1). Forns in the latter
category, the numbers(n,) are distinct totients. Hence, by Lemma 2.8 and (4.1), the number ofrgich

y(logs y)°W (y) ~1/6 Y
K ———(log S L — .
logy (log 5) log y(log, y)?
Let B;f(y) denote the number of remainimg (those not satisfying any of conditions (i)—(vi) above), so that
Y *
5.28 Bi(y) €« —————5 + B (y).
(5.28) 1) < o y(logy y)? i)

If j < L—1,thenp;yi ---pr, < pj, 50 by (5.10), (5.15), (5.25), and < 10log; v,

logy p;
1+ &(h+M—1)"

logy(n3/pj) < 5 +logh <logyy — 2logg y < logy y — 10.

In particular, sinceis > y/ log? , this shows that
(5.29) p; > y9/10, Pis1 < yl/(10010g2 Y)

Whenj = L, the first inequality in (5.29) holds sineg > y/ log? y, and the second inequality is vacuous.
Note thatp is S—normal for allp|ngn4, and hence by (2.2),

(5.30) PHp—1) > (p— 1)/ 3 pl/(logyy).

We now group the:; counted inB’ (y) according to the sizes d?* (p; — 1). Let J be the largest index
with logy, P*(py — 1) > (logyy)*?. By (5.29),J > j. Sete = 1/log, y. For eachns, there are numbers

Cj+1, - - -y, €ach an integral multiple ef and with¢; — e < % < ¢ for eachi. Also set(; =1
and
. Cs logz y + log 4 ~1/3
31 = 1 .
(5.31) ¢J+1 = min (1 e + ogyy (logy y)
By (5.30),
(5.32) logy P*(pi — 1) < (yp1 (i > J).

By (5.14) and (5.25),

J—j
(5.33) ZaiCjJri <l—-w;+ h%e <1- wj/2.
i=1
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Letd = y/logy S/ log, y. We claim that

1 Pt(p;,—1 1 Pt(g —1
o Prpi =) —logy PHaGi =) o _ 5y 41ys (5 <i < J).
logy y

To see this, fix, letk =i — j and

_ logy P*(pi — 1) 8= logy P*(gi — 1)
log, y ’ logy y

(5.34)

By (2.2), if 3 > a + (2k + 1)4, then
Q(p(ns), P (pi — 1), PT(q; — 1)
logy y

a contradiction. Assuming < a — (2k + 1)J likewise leads to a contradiction. This establishes (5.34). In
particular, (5.34) implies thag; 1, ..., ¢ exist.
By (5.15), (5.25), (5.30) anlbg; y > M/10, for j < i < J,

(k+1)(B—-a—-0) <

SE(B—a+d),

1 i — 1 log 4 1 +log 4
¢G> 0go P 0g3 Yy — log (1 4 wz)((z-H ) 0g3 Y 0og
(5.35) logy y logy y
. > a1 + (logy y)~1/* 9210 Cir1 + (logy y) 03
= Gi+1 10(M T h) g3y i+1 22 Y .

We make a further subdivision of the numbegs counting separately those with; - - -ps,q; - q7) =
m. Let B;(¢; m;y) be the number of3 counted byB; (y) satisfying

o logy PH(pi — 1)
logy y
Fix m, ¢ and supposes is counted inB;({;m;y). Letp; ---py/m = pj, - - - pj,_,, Where

PO <pi<y, G- <G  (Gr1<i<lJ).

J=Jo<j <-<Jpg-1<J
Letyy=1,forl <i<k—1lety; =(;,+ (2L +1)d,andfor0 <i < k—1lety; = v; — (4L +2)0 —
Also, putyy, = (541 + (2L + 3)4. For brevity, for0 < i < k — 1 setu; = exp[(logy)*i] and for0 < i < k
setv; = exp[(logy)¥i]. By (5.32),PT(p; — 1) < vy, fori > J. We also claim thaP*(¢; — 1) < vy, for
1 < J. If not, then by theS—normality of the primeg; andg;,
(J =5 +2) (v — Cr1 +0logy y) < Q(¢(n3), exp[(logy)*+)], vx) < (J —j+1)(vk — (1 + 0 logy y),
a contradiction. Hencéd3;(¢; m; y) is at most the number of solutions of
(5.36)  (pjo— 1) Py = D(sr1 = 1)+ (pr = D)d = (gjo = 1)+ (g5, — Ve <y/p(m),
whereP*((pj41 — 1) (pr — 1)e) < vg, andp;, andg;, areS-normal primes satisfying
(5.37) uw; < PT(pj, —1),P (g, —1) <v; (0<i<k—1).
By (5.29),4(m) < y'/'°. Also,p; — 1 cannot be divisible by a factdr> y'/3 with P*(b) < y'/91082,
Further, (5.35) and the definition of imply thaty; 1 — v; > 20 for2 < i < k. By Lemma 5.1,

Bj(¢miy) < (calogy y)SLT8(L + 2)2) (log vy, ) OEAD? (log ) 2T i+

dcb( )

whereE < §L%log L. By (5.33), the exponent dbg y is at most—1 — w;/2 + E. By (5.27),Q(d) <
logd < (logs y)?, hence

(log )~ ~/% exp{O((logy y)*/* (logz 1)) }.

Bj(¢myy) < dﬁm)
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Also,

Z Qb(lm) < (logyy + 0(1))L_j < exp{O((logz y)*)}.

The number of possibilities faf is at most~" < exp{2(log; y)2}. Summing over all possible: and¢,
and applyindogs y > M/10, we have

* —Wj o -1/
Bi(y) = > Bj(¢;miy) < —2—(logy) /> +osa )/t

¢,m logy
Y —logyy 3/4
logy 1
< logy P { 20(2C logsy + M + 3)3 + (logy y) }

)
€ oy P (log y)/10}.

Combining this with (5.28) completes the proof of (5.23).

6 The normal multiplicative structure of totients

The proofs of Theorems 1 and 2 suggest that for most totients x, all the pre-images of m satisfy
(x1,x2,...,21) € SL(€) with L nearL and¢ defined as in section 4. We prove such a result below in
Theorem 16, which is an easy consequence of Theorem 1 and the ergatrizated for its proof. From this,
we deduce the normal size of the numbgfs) and establish Theorems 10 and 11. Using these bounds, we
deduce the normal order 6f(m) (Theorem 12 and Corollary 13).

Theorem 16. Suppos® < ¥ < Ly(x), L = Lo — ¥ and let

. ¢ — _ = —(Lo—i)/40 <i<L—1).
(6.1) & = &i(w) =1+ J5055¢ (0<i<L—-1)
The number of totients: < = with a pre-imagen satisfying
2
(6.2) (e1(n52),....ap(nia) ¢ S2(€) or ap(ma) <
08y T

is < V(z)exp{—W2/4}.

Proof. As in Section 4, defind/;(x) to be the number of totients, < x with a pre-image satisfying/()
for ¢ < j, but not satisfying;), wherex = (z1(n;z),...,z1(n;z)). By Theorem 1, Corollary 3.5, and
(4.8), the number of totients < = with a pre-imager satisfyingx ¢ .77,(€) is at most

Z M;(z) < LZ(.&c)e_\Iﬂ/4 < V(:L‘)e_‘llz/4.

1
J<I1 08T

Now suppose that € .7 (&) andz;, < 2/log, z. Thengy(n) < e, We can assume that/ logz <
n < 2zxlog,r and thatn is S-nice, whereS = exp{(log, )%}, the number of exceptions being
V(x)/logy x. By Lemma 2.2, we can also assume théh) < 10log, . Putp; := ¢;(n). Lemma 3.8
giveszz < 50° < 0.9, and sap < exp((log z)%?). Thus,

n/(popip2) = papa - - - < exp(10(logy x)(log x)o'g) < g1/100

and sopg > 2'/4 for largex. In particularp? { n.
Suppose now that has exactlyl.o — k& + 1 prime factors> e’ where we fixc > ¥. Then

v = (po— 1)¢(p1p2- PLo—k)W
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for some integeww satisfying P (w) < e, Using the prime number theorem to estimate the number of
choices fompg givenp; - - - pr,—x andw, we obtain that the number ofof this form is

X
< @ Z ¢(p DLo—k zw: 7RL0 (sk;f)v

P1,--sPLo—k

sincepy - - pro—k € Zro—k(&; ), where§,, = (&, ...,¢r,—k—1). By Lemma 3.1, Corollary 3.5, and
Lemma 3.10 (ii),

Riy k(& 7) < (logy ) 0™ T, ), < Z () exp(—k* 4C),
hence the number of totients is

< %Z(m) exp(—k*/4C) < V() exp(—k*/4C).

Summing ovetk > W gives the required bound. O

We show below that for most o#7,, z; ~ ¢’(1 — j/L) for 1 < j < L. Let T} (%) = Vol (S} : %),
recall definition (3.3) and Lemma 3.7. Define

—_

. 1
6.3 )\i:Zi z’>0, )\:hm)\i: < —-.

By Lemma 3.7 and explicit calculation gf for smalli, we have for largd.

1 1 gigr—i _ 1 9i9p—i _ 1

4 - < 7 < o 9 < P < 5"
(6.4) 5 A 3 qgr, 3 g1 3
Lemma 6.1. Supposeé < L — 2, 3 > 0, « > 0 and defing by

o'(1—i/L)
6.5 = -
(6:5) p 1+6
If & > 0, then
i (1+0L/i)" |

. T > T —— e 9L,
(66) L( ﬁ)xL a)<< LHL (1+9)L
For —)\; < 0 <0,
(6.7) Ti(z; > Byxp > a) < Ty e 3loor exp{ . )\ (0 — log(1 + 9))} )
whereK = 2 +log(1 — \) = 0.0873.... If —i)\;/L < 6 < 0, then

2Lagr, v i _L<L_7’) 2

(6.8) Ti(z; > B,xp > ) < Tre 3 oL exp{ 5; 0 5.

Proof. For each inequality, we show that the region in question lies inside a simplexifon we may apply
Lemma 3.6. The volume is then relatedltp via Lemma 3.4. By Lemma 3.8;;, < 1/g1. Hence, we may
assumern > 1/g;, else the volumes are all zero. Also by Lemma 2,82 agr,—;, SO we may assume that
B > agr—; in showing (6.6). Also, if3 < agr—;, thenT}(z; > B,z > o) = Tr(x > o) (i.e., doesn’t
depend on3), while the right sides of (6.7) and (6.8) are each increasirty iFhus, for (6.7) and (6.8), we
may assume also th&t> ag;,_; as well.

All three inequalities are proved by a common method. Constder.#7, with x;, > o and lety; =
xj —agr—; foreachj. Thenv; .y =v; - x<0(1<j< L)andvy -y <1—agr. Let{ =1—ag and
ﬂl =0 —agr_;. Seth =Yj — ﬁ’gi_j fOFj <1 andzj =Yj forj > i. By (33),

0 (A<j<L,j#i),
3,
£~

N

V;-Z
(6.9) Vi Z

Vo Z

NN

/6/
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With these definitionsy; = =08 = 2z = 0. Hence, for anyd > —g;, we have

v6 z\§+A5, vy = (vo+ (gi + A)vy),

ﬂ:ei zZ < 0.
In the last inequality, we take for (6.7) and (6.8), and- for (6.6). By (3.3), (3.7) and (3.8),
L—1
(6.11) vy + Zgjvj- + Ae; + Z (9; + Agj—i)vj + (91 + Agr—;)ve = 0.
j<i j=i+1

To ensure that each vector on the left of (6.10) has a positive coeffigie assume that > 0 for proving
(6.6), andA < 0 otherwise. We may also assume that 5'g; > 0, else the volume in question is zero by
(6.9) (each coordinate afis non-negative). By Lemma 3.6, together with (3.9), Lemma 3.7 and (6.4),

L—-1 —1 * —1
T* 9 j—1 91—
(6.12) j=it+1 J L

gi (E+AB)F

LT 5.
Al (1+ Ag')E~

Sinces < agr—; < gL_i/gL, if A > 0then

§+AB = (1+AB) (1 —ag PRI +1Afj;/ =

Taking A = % gives (6.6). If—g; < A < 0, then by (6.4),
£+ A8 < (1+ AB) (1 — agL(1 — gigr—i/g1)) < (1+ AB)e™3°9%,
For (6.7), we taked = —g;, then use
i i\ L 2\ N\
(1—=XN) (1 N 0 —I-z)\l/L) o (1-=X) exp{eL +2)\2}

) (1+ AB)(1 — ag) < (1 + AB)e9%,

(L=X)"H(1 - Bt =

(1+6)L 11—\ S (1+0)k 11—\
AL = JA 4+ O(1) (a corollary of Lemma 3.7). Taking = % gives (6.8), since
(1+6L/i) LL—1) o[ 1 B
6.13 Sl A 222 [ 2 =N () :
(6.13) aror P i 2 ;( ) (j + 2)i7
and all summands in the sum grare positive. O

We apply Lemma 6.1 to determine the size;gfz) whenn is a pre-image of a “normal” totient. Recall
thatV (z; ¢) is the number of totients: < = with a pre-imager satisfying%’. An inequality we will use is

1
(614) Z ; < CC(IOgS Zl)g’

vEY
Pt (v)<y

coming from the first part of Lemma 4.3 and Theorem 1.

Lemma 6.2. Suppose: islarge, > 0,andl <i < Ly = Lo(a;). Defined by (1 + )3 = o'(1 —i/Ly).
logs gi(n) < L LO(LO - 7‘) 2
(a) 110 < 0 < g, thenV (s 5200 \ﬁ> <Vl exp{ et

(b) If 51 < 0 < &, thenV (; 22280 < ) < V/()e0h0/13,
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logy

(@) 1f =2 <0 < 0, thenV (w; 52800 > 3) < V() i exp { ~0.49 2olle=ig2 |

(€) If —§ <0 < —0.29/, thenV/ ( logp uiln) ﬂ) < V(x)elo/10,

Proof. Let A be a sufficiently large, absolute constant. We may assume that

. 1/2
A<i<Lo—A, 0] = A <L;> for (a) and (d),
(6.15) o(Lo—1)

0] > A for (b) and (c)
Lo

for otherwise the claims are trivial. Plit= ||| 2L°(f°_ﬂ for (@) and (d), and pu¥ = [\/2]0|L01 for

parts (b) and (c). LeL. = Ly — V. By (6.15), for the range of given in each part, we have< L — 2.
Define&; by (6.1). By Theorem 16, the number of totients< = with a preimage: satisfyingx ¢ .77,(&),
xr < 10 7 orm < o is O(V(x )e*i‘l’z). Let. = 7.(&) N {z; < B} for (a) and (b), and? =
(&) N {:nl B} for (c) and (d). As in the proof of (4.10), far> 2 let N(z) be the number of totients

for whichn > ,x € .7, and—2— <z, < 2L, By the argument leading to (4.10) and using (6.14),
log logy @

log

OgQ Qz< ) < —\112/4 Clog?b b
1 V —s V s [ = o
(6.16) < & ﬁ) < Vi(x)e 1 . g e Ry <ﬂ {x og, = x

b>2
By Lemma 3.1,
b 1
; 1 1 1 = .

Ry (yﬁ { logzx} ,:L') < (logy )X Vol .7 N {xp > b/logy 2}, ¢ oz, 7

Leta = log - ByLemma 3.9¢/, y; and{; defined herely € .7, y; < < 3 andy;, > o/, where
B —(Lo—i
A _ 0—1)/40
(6.17) e 5(1 O(e ))
By Lemma 3.2 and Corollary 3.3,
(6.18) Vol [ N{xy > b/logya}]™* < Tf (2; = f,ap > o).
Defined’ by 1 + 6 = (1 + 0)50 ¢l sothatd'(1 + 6') = o'(1 —i/L). By (6.17),6/ — 0 = (1 +
0)(&,---¢_, —1) < e"m(lo—) By (6.15), if A is large enough then
;o ~L(Lo—i) Y]
. < < .
(6.19) 0<60 —0< Ae” 1 1000
We now apply Lemma 6.1 (wit¥, 6 replaced by3’, 6'). For parts (a) and (b), (6.19) impli@s< ¢’ < %
and we may apply (6.6). For (c), (6.19) implie% 0 < —0. 288Li and we apply (6.7). For (d), (6.19)
glves—@ < 0’ < 0 and we apply (6.8). Combining these estimates with (6.18), we arrive at
(6.20) Ry (:7 N {{EL = } ;$> < (log, x)LTLBe_%a/gL
logy x
where ,
i (LEOLJ) for (a),(b)

110")
B={exp {Kz + 20 L+ L —log(1+6) ) for (©)
gyesp { - 25702} for (d).
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By (1.7) and Lemma 3.7, we havéLg;, > aLo~* > o~ Y. Hence, for some absolute constéht> 0,

Clog?b—2a'L T Clog?((k+1)o~¥)—-C1k w2
Ze og”b—30'Lgr 5= Ze og™((k+1)e™")=C1 :eXp{llC—i_O( )}
b>2 k>0
Since Corollary 3.5 implies thdlog, #)*T;, < Z(z)exp{—¥2/(4C) + O(¥)}, inequalities (6.16) and
(6.20) now imply
log, qz( ) < _1g? o(w)
To complete part (a), observe that the absolute value of the summands3h((@ith ¢ replaced by’) are

decreasing. From the definition &@fand (6.19), we obtai®(¥) < %92 + O(1) and

B gexp{L(Li_i)(@/)z <—;+ L;;i9/>} gexp{_‘r’(elyllé(f_i)}

L(L —i Lo(Lo —i
<exp {—0.27%”92} < exp {—O.QGWOQ} .

this gives part (a) of the lemma. For (b), (6.19) impl#és /i > 0.33, soilog(1 + #'L/i) < 0.08642L¢'.
Also,log(1 + ') > 0.94230'. Therefore,B < e 00T81L0"  —0.077Lo0 WhenceBeO(‘I’) < e~ 15b00 For
(c) we use)’ —log(1+6") < 0.06830". If i < 100, Ki = O(1) A' > 25— > 0.265, and fori > 100,

< 0.302(—L¢") and 12— > 0.4781. In either casep < ¢ 106”’ and thereforeQeO(‘I‘) < etolof py

(6 19) Finally, part (d) foIIows from (6.19) by similar calculations to thospart (a). O
Proof of Theorem 10Letz; = % Consider first the cage< € < 3L Az < (1-6)8 < 1+ ,take
0 =ecinLemma6.2 (a). Ifr; > (1 +¢)B;, taked = —15; € [—¢ —3¢]. Use Lemma 6.2 (d) iff > —
and Lemma 6.2 (c) otherwise. This yields the desired bounds, since in thechdtdr> —ﬁ.

Next, assum%i—O <e< i Ifz; < (1—¢)B;, taked = e in Lemma 6.2 (b). Ifz; > (1 + ¢)3;, take
0 = —15: € [~&, —5e] in Lemma 6.2 (c). We may do so sinée< —0.29-. O

Proof of Theorem 11Assumeg > 10 andh > 10, for otherwise the conclusion is trivial. Let

ilog(Ly — 1)

TN Lo(Lo — 1)

(1<i<Lo—h)

and IetN be the number of totients x with a preimage satisfyind% 1| > ;. First, suppose that
ei < g7, andletk = Lo —i. We have— > 442, for if not, thenk < 4¢%log Ly < 3L, and consequently
logk

€ >y > g% > 10. By Theorem 10,

w\»—a
MH
Q

?log(Lo — i i(Lo — i
N; < V(x)exp {_glg(fo) + %log <(lg;(2)Lg)>] < V(z)(Lo—1i)2~

Summing ovet < Ly — 4¢? and usingy > 10, we obtain

(6.21) > N« V(@)(dg?)2 3 < Vi)g 2
Eigi/(?)L())
Next, suppose thajr < e; < 5. Sincei < 992W 1892 log Ly, Theorem 10 gives
(6.22) Z N; < V(x)g*(log Lo)e_ﬁ‘/l‘)giL0 < V(z)e 1avialo,

i/(3Lo)<ei<1/8
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), then|% 1>

i . .,
Z Ni < V(z) (LO@HI)‘*LO + Z exp _LO(II)Z'Z) (?)ZLO> ] )

e;>max(i/(3Lo)),1/8) 3 Lo<i<Lo—h L

Finally, if ; > Inax(

o0 s j = max(gj-, §). By Theorem 10,

(6.23)
< V(x) e~ TosLo 4 Z e~ 95 (Lo—0) < V(x)e™ 5.
i<Lo—h
Together, inequalities (6.21)—(6.23) give Theorem 11. O

Proof of Theorem 12Assumey > 127, for otherwise the theorem is trivial. L&t = ¥ (x) = [/nlogz z],
L = Lo(z) — ¥, defineg; by (6.1) and sef = exp{(log, x)1%°}. Letn be a generic pre-image of a totient
m < z, and sely; = g;(n) andz; = z;(n;z) for 0 < i < L. Also, definer by m = ¢(qo---qr)r. Let
g; = max(0.82n, ﬁ). LetU be the set of totients: < x satisfying one of four conditions:

(1) (w1,22,...,21) € ZL(E),

(2) mis notS-nice,

@<l |g-1>a

(4) Q(r) > (logy z)'/2.

By Theorem 16 and Lemma 2.8, the number of totients. = satisfying (1) or (2) iSD(V (x)(log, x)*i”).
Theorem 10 implies that the number of totients satisfying (3) is

V(z)

Vv —_—
«Viz) (log, )70

(nLo)e—o.82nL0/13+ Z o 1/39 <<V(£L')€_%GWLO<<
i>2.461Lg

Consider now totients satisfying (4), but neither (1), (2) nor (3). Byd3- - - ¢1, < z'/3. By Lemma 3.8,

logy PT(r) < zp logy x < 100" logy x < 200~ ¥ logs 2 < exp(y/logs ).
By Lemma 2.3, the number of totients with> R := expexp({5/log, z) is O(g5gz)- Now suppose

r < R. Giveng, ..., qr andr, the number of possibilities fay, is
X
L—m.
q---qrrlogx

Applying Lemma 3.1, followed by Lemmas 3.4 and 3.10, gives
1
Z a-q SRL(§) < Z(ilﬁ)e_%qj2 < Z(z)(log, :1:)_%77.
L qL

Forr < y < R, we haveQ(r) > 10logy, R > 10log,y. Hence, the number of possible< y is
O(y/log?y) by Lemma 2.2. Therefor§,_ 1/r = O(1) and we conclude that

(6.24) U| < V(z)(logy z) 107,
Assume now that a totiemt ¢ U. Since every prime factor of a preimages S-normal,
Qm)=1+z1+---+zr)loggz+ O ((log2 x)%(logg a:)%> )

Since (3) fails, Lemma 3.8 implies

: 0
Yoowi< Y dA+082m+ > 5otk < g, +0.98

1<<L i<Lo/3 Lo/3<i<L
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and
. , , i io' i0*
2 m224§ ﬂz(l—e@);E 9(1—0.8277)—' o 3L
1L 1<L0/3 i<Lo/3 i>1 i>2.46Lon
5 0
> 1—0.82 golo/3-1 = 5 & (.98.
1 = ( n) — 4o o1 g n

Therefore, ifx is large thedQ(m) — 1 log2x| 0.997nlog, « for m ¢ U. This proves the first part of
Theorem 12. The second part follows easny since a totiegt U is S-nice and hence

Q(m ZQ —1,1,8) + Q(r) < (logy z)'/2. O

Proof of Corollary 13.1t suffices to prove the theorem wif{m) = Q(m). Divide the totientsn < x
into three sets$;, those withQ(m) > 10log, z, S2, those not inS; but with |[Q2(m) — logy /(1 — o)| >

Llog, z, and S3, those not counted i%; or S,. | < —%— and by Theorem 12,
3 log“ z
|Sy| < V(z)(logy x)~1/30, Therefore
(6.25) S5 = V(2)(1 — O((logz ) ~*/*))
and also
(6.26) Z Q(m) < |S1|logx + |S2|logy < V (2)(logy )*/3.
meS1US2

For eachm € 53, let
_Q(m) 1

m =

logox 1-—0p
and for each integelV > 0, let.S3 y denote the set ofv € S3 with N < |e,|logsz 2 < N + 1. By Theorem
12, (6.25) and (6.26),

Z Q(m (V(z)y/logy ) + Z Z

meY (x) 0KN<KL loggz MES3, N

108;2 x 10%2 x ~N/10
V N+1
|S\+O<( 1g3$§( +1)e

:V(x)log2x<1+0< 1 )) O
1—-p logs

7 The distribution of A(m)
7.1 Large values ofA(m)

Proof of Theorem 3First we note the trivial bound
1 1
{m < x:A(m) > N} < T « V(l’)ﬂ,
N N
which implies the theorem wheN > log? z. Suppose next thaY' < log? z. Suppose: is sufficiently large
and set? = [loglog N] andL = Ly(z) — V. Note thatl < 2L(z). Define¢; by (6.1). By Theorem

16, the number of totients: < = with a pre-imagen satisfyingx(n) ¢ .7.(€) is O(V(:c)e*%‘lﬂ) (here
x(n) = (x1(n;x),...,xr(n;x))). For other totientsn, all preimages: satisfyx(n) € .#7.(§). By Lemma
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3.8,z = zp(n) < 1/gr. Forintegerb € {0,1,...,L — 1}, let N, be the number of these remaining
totientsm < x with a preimage: satisfying
b b+1

— T < .
Lygr, Lyr,

PutY, = b+1 —logy . Write n = qo---qrt, so thatlog, Pt(t) <Y, and letr = ¢(t). Also note that
logy Yy < bgM As in the proof of (4.10), using Lemmas 3.1 and 3.10, together with (6. d1Canollary
3.5, gives

Ny(z) < %RL@?L(S) N{zr > b/(Lgr)} Z -

< é —~Cob, oClogy)? < V(x exp{ Cob+ Vlogb + O(V + log? b)}
x

Putby = [¥2/Cy]. The number of totients with;, > by/(Lgy) is therefore< V(z)e= ¥ +O(Vlog¥)

V(x)e‘%‘l’z. The remaining totients have all of their preimages of the form qq - - - gt with log, P (1) <
Y}, The number of such preimages is

x 1 Cob— L
G D - G Ea
& logy PT(t)<Yy,

Hence, the number of totients having at leasiV such preimages is

V(%) _cop-Luriz V(z)
< TG 0" ac bo K N1/2' O

7.2 Sierpihski's Conjecture

Schinzel’'s argument for deducing Sigipki's Conjecture for a giveh from Hypothesis H requires the
simultaneous primality of> & polynomials of degrees up o Here we preset a different approach, which
is considerably simpler and requires only the simultaneous primality of three [podamomials. We take
a numberm with A(m) = k and construct ah with A(lm) = k + 2. Our method is motivated by the
technique used in Section 5 where many numbers with multiplicéiye constructed from a single example.

Lemma 7.1. Supposel(m) = k andp is a prime satisfying
@) p>2m+1,
(i) 2p + 1 and2mp + 1 are prime,
(iii) dp + 1 is composite for all/|2m exceptd = 2 andd = 2m.
ThenA(2mp) = k + 2.

Proof. Supposep—t(m) = {x1,...,7,} andg(x) = 2mp. Condition (i) impliesp { =, hencep|(q — 1)
for some prime; dividing x. Since(q — 1)|2mp, we haveg = dp + 1 for some divisord of 2m. We have
q > 2p, s0¢® 1 x andg(z) = (¢ — 1)é(x/q). By conditions (ii) and (iii), eithety = 2p+1 or g = 2mp + 1.
In the former caseg(x/q) = m, which has solutions = (2p + 1)z; (1 < i < k). In the latter case,
¢(x/q) = 1, which has solutiong = ¢ andz = 2q. O

Supposed(m) = k, m = 1 (mod 3), and letdy, ... ,d; be the divisors oRm with 3 < d; < 2m.
Let pq,...,p; be distinct primes satisfying; > d; for eachi. Using the Chinese Remainder Theorem,
let a mod b denote the intersection of the residue classég1 mod p; (1 < i < j). For everyh and
i, (a + bh)d; + 1 is divisible byp;, hence composite for large enough The Primek-tuples Conjecture
implies that there are infinitely many numbérso thatp = a + hb, 2p + 1 and2mp + 1 are simultaneously
prime. By Lemma 7.1A(2mp) = k + 2. ASp =2 (mod 3),2mp =1 (mod 3). Starting withA(1) = 2
A(2) = 3, andA(220) = 5, Sierphski’s Conjecture follows by induction dn
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k my | k my | k my | k my | k my | k my | k my | k mpg

2 1|77 9072 | 152 10080| 227 26880| 302 218880| 377 165888 452 990720| 527 2677248
3 2|78 38640| 153 13824 | 228 323136| 303 509184 378 436800| 453 237600| 528 5634720
4 4179 9360 | 154 23760 229 56160| 304 860544 | 379 982080| 454 69120| 529 411840
5 8| 80 81216| 155 13440| 230 137088| 305 46080| 380 324000| 455 384000| 530 2948400
6 12| 81 4032 | 156 54720| 231 73920| 306 67200| 381 307200| 456 338688| 531 972000
7 32| 82 5280 | 157 47040| 232 165600| 307 133056| 382 496800| 457 741888| 532 2813184
8 36 | 83 4800 | 158 16128| 233 184800| 308 82944 | 383 528768| 458 86400| 533 3975552
9 40 | 84 4608 | 159 48960| 234 267840| 309 114048| 384 1114560| 459 1575936| 534 368640
10 24 | 85 16896 | 160 139392| 235 99840| 310 48384 | 385 1609920| 460 248832 535 529920
11 48 | 86 3456 | 161 44352| 236 174240| 311 43200| 386 485760| 461 151200| 536 2036736
12 160 | 87 3840 | 162 25344| 237 104832| 312 1111968| 387 1420800| 462 1176000| 537 751680
13 396 | 88 10800| 163 68544 | 238 23040| 313 1282176| 388 864864 | 463 100800 538 233280
14 2268 | 89 9504 | 164 55440| 239 292320| 314 239616 389 959616| 464 601344 | 539 463680
15 704 | 90 18000| 165 21120| 240 93600| 315 1135680/ 390 1085760| 465 216000| 540 2042880
16 312 | 91 23520| 166 46656 | 241 93312| 316 274560 391 264960| 466 331776| 541 3018240
17 72 | 92 39936 | 167 15840| 242 900000| 317 417600| 392 470016| 467 337920| 542 2311680
18 336 | 93 5040 | 168 266400| 243 31680| 318 441600| 393 400896 | 468 95040| 543 1368000
19 216 | 94 26208| 169 92736| 244 20160| 319 131040| 394 211200| 469 373248| 544 3120768
20 936 | 95 27360| 170 130560| 245 62208| 320 168480| 395 404352| 470 559872| 545 1723680
21 144 | 96 6480 | 171 88128 | 246 37440| 321 153600| 396 77760| 471 228096| 546 1624320
22 624 | 97 9216| 172 123552 247 17280| 322 168000| 397 112320| 472 419328| 547 262080
23 1056 | 98 2880 | 173 20736| 248 119808| 323 574080| 398 1148160| 473 762048 548 696960
24 1760 | 99 26496 | 174 14400| 249 364800| 324 430560| 399 51840| 474 342720| 549 1889280
25 360 | 100 34272| 175 12960| 250 79200| 325 202752| 400 152064 | 475 918720| 550 734400
26 2560 | 101 23328| 176 8640| 251 676800| 326 707616 401 538560| 476 917280| 551 842400
27 384 | 102 28080| 177 270336| 252 378000| 327 611520 402 252000 477 336000 552 874368
28 288 | 103 7680| 178 11520| 253 898128| 328 317952 403 269568| 478 547200| 553 971520
29 1320 | 104 29568 179 61440| 254 105600| 329 624960 404 763776| 479 548352| 554 675840
30 3696 | 105 91872| 180 83520| 255 257040| 330 116640| 405 405504 | 480 129600| 555 4306176
31 240 | 106 59040| 181 114240| 256 97920| 331 34560| 406 96768 | 481 701568| 556 1203840
32 768 | 107 53280 182 54432| 257 176256| 332 912000| 407 1504800| 482 115200 557 668160
33 9000 | 108 82560 183 85536| 258 264384| 333 72576| 408 476928| 483 1980000| 558 103680
34 432 | 109 12480| 184 172224| 259 244800| 334 480000| 409 944640| 484 1291680| 559 2611200
35 7128 | 110 26400| 185 136800| 260 235872| 335 110880| 410 743040| 485 1199520| 560 820800
36 4200 | 111 83160| 186 44928| 261 577920| 336 1259712| 411 144000| 486 556416 561 663552
37 480 | 112 10560 187 27648| 262 99360| 337 1350720| 412 528000| 487 359424 | 562 282240
38 576 | 113 29376| 188 182400| 263 64800| 338 250560 413 1155840| 488 1378080| 563 3538944
39 1296 | 114 6720| 189 139104| 264 136080| 339 124416| 414 4093440( 489 2088000| 564 861120
40 1200 | 115 31200| 190 48000| 265 213120| 340 828000 415 134400| 490 399168| 565 221760
41 15936| 116 7200| 191 102816| 266 459360 341 408240| 416 258048| 491 145152| 566 768000
42 3312 | 117 8064 | 192 33600| 267 381024| 342 74880| 417 925344| 492 2841600| 567 2790720
43 3072 | 118 54000| 193 288288| 268 89856| 343 1205280| 418 211680| 493 1622880| 568 953856
44 3240 | 119 6912 | 194 286848| 269 101376| 344 192000| 419 489600| 494 1249920| 569 7138368
45 864 | 120 43680| 195 59904| 270 347760| 345 370944| 420 1879200| 495 2152800| 570 655200
46 3120 | 121 32400| 196 118800| 271 124800| 346 57600| 421 1756800| 496 2455488| 571 3395520
47 7344 | 122 153120| 197 100224| 272 110592| 347 1181952| 422 90720 497 499200| 572 3215520
48 3888 | 123 225280| 198 176400| 273 171360| 348 1932000| 423 376320| 498 834624| 573 2605824
49 720 | 124 9600 | 199 73440| 274 510720| 349 1782000| 424 1461600| 499 1254528| 574 1057536
50 1680 | 125 15552| 200 174960| 275 235200| 350 734976 425 349920| 500 2363904| 575 1884960
51 4992 | 126 4320| 201 494592 276 25920| 351 473088| 426 158400 501 583200| 576 3210240
52 17640 127 91200| 202 38400| 277 96000| 352 467712| 427 513216| 502 1029600| 577 1159200
53 2016 | 128 68640| 203 133632| 278 464640| 353 556800 428 715392| 503 2519424| 578 4449600
54 1152 | 129 5760 | 204 38016| 279 200448| 354 2153088| 429 876960| 504 852480 579 272160
55 6000 | 130 49680| 205 50688| 280 50400| 355 195840| 430 618240| 505 1071360| 580 913920
56 12288| 131 159744| 206 71280| 281 30240| 356 249600 431 772800| 506 3961440| 581 393120
57 4752 | 132 16800 207 36288| 282 157248| 357 274176| 432 198720 507 293760 582 698880
58 2688 | 133 19008| 208 540672| 283 277200| 358 767232| 433 369600| 508 1065600 583 2442240
59 3024 | 134 24000| 209 112896| 284 228480| 359 40320| 434 584640| 509 516096| 584 6914880
60 13680| 135 24960| 210 261120| 285 357696| 360 733824 435 708480| 510 616896 585 695520
61 9984 | 136 122400| 211 24192| 286 199584| 361 576576 436 522720| 511 639360| 586 497664
62 1728 | 137 22464 | 212 57024 | 287 350784| 362 280800 437 884736| 512 4014720| 587 808704
63 1920 | 138 87120| 213 32256| 288 134784| 363 63360| 438 1421280| 513 266112| 588 2146176
64 2400 | 139 228960 214 75600 289 47520| 364 1351296| 439 505440| 514 2386944| 589 2634240
65 7560 | 140 78336| 215 42240| 290 238464| 365 141120| 440 836352| 515 126720| 590 4250400
66 2304 | 141 25200| 216 619920| 291 375840| 366 399360| 441 60480| 516 2469600 591 2336256
67 22848 142 84240| 217 236160| 292 236544| 367 168960| 442 1836000| 517 2819520| 592 1516320
68 8400 | 143 120000| 218 70560| 293 317520| 368 194400| 443 866880| 518 354816| 593 268800
69 29160| 144 183456| 219 291600| 294 166320| 369 1067040| 444 1537920| 519 1599360| 594 656640
70 5376 | 145 410112| 220 278400| 295 312000| 370 348480| 445 1219680| 520 295680 595 1032192
71 3360 | 146 88320| 221 261360| 296 108864| 371 147840| 446 349440| 521 1271808| 596 4743360
72 1440 | 147 12096| 222 164736| 297 511488| 372 641520 447 184320| 522 304128| 597 4101120
73 13248 148 18720| 223 66240| 298 132480| 373 929280| 448 492480| 523 3941280| 598 2410560
74 11040| 149 29952| 224  447120( 299 354240| 374 1632000| 449 954720| 524 422400| 599 9922560
75 27720| 150 15120| 225 55296| 300 84480| 375 107520| 450 1435200| 525 80640| 600 427680
76 21840| 151 179200| 226 420000| 301 532800| 376 352512 451 215040| 526 508032

TABLE 2. Smallest solution tel(m) = k

37
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Table 2 of [34] lists the smallest, denotedn,,, for which A(m) = k for 2 < k£ < 100. We extend the
computation td: < 600, listing m,, for & < 600 in Table 2.

7.3 Carmichael's Conjecture
The basis for computations of lower bounds for a counterexample to CaretilConjecture is the

following Lemma of Carmichael [5], as refined by Klee [24]. For short,slet) = [],,, p denote the
square-free kernel of.

pln

Lemma 7.2. Supposes(z) = m and A(m) = 1. If dlz, (d,z/d) = 1, s(¢(d))|=, e|sé//il) and P =
1 + e¢(d) is prime, thenP?|x.

From Lemma 7.2 it is easy to dedu&272432|x. Here, following Carmichael, we break into two cases:
(1) 32 || = and (I) 33|z. In case (1) it is easy to show thas?|z. From this point onward Lemma 7.2 is
used to generate a virtually unlimited set of prinfegor which P?|z. In case (I) we search faP using
d=1,e =6kord=9,e = 2k, wherek is a product of distinct primes (other than 2 or 3) whose squares
we already know divide:. That is, if6k 4+ 1 or 12k + 1 is prime, its square divides. In case (Il) we try
d=1,e=6kandd = 1,e = 18k, i.e. we test whether or né& + 1 and18k + 1 are prime.

As in [34], certifying that a numbeP is prime is accomplished with the following lemma of Lucas,
Lehmer, Brillhart and Selfridge.

Lemma 7.3. Suppose, for each primgdividing n — 1, there is a numbeu,, satisfyingag—1 = 1and
a" V% £ 1 (mod n). Thenn is prime.

The advantage of using Lemma 7.3 in our situation is that for a givere are testing, we already know
the prime factors of” — 1 (i.e. 2,3 and the prime factors 6j.

Our overall search strategy differs from [34]. In each case, vgéfiind a set of 32 “small” prime#
(from here on,P will represent a prime generated from Lemma 7.2 for whithz, other than 2 or 3).
Applying Lemma 7.2, taking: to be all possible products of 1,2,3 or 4 of these 32 primes yields & set
of 1000 primesP, which we ordep; < --- < p1goo. This set will be our base set. In particulatggy =
796486033533776413 in case (I) angh1po0 = 78399428950769743507519 in case (ll). The calculations are
then divided into “runs”. For run #0, we take fbrall possible combinations of 1,2 or 3 of the primessin
Forj > 1, run #j tests every: which is the product op; and three larger primes if. Each candidaté’ is
first tested for divisibility by small primes and must pass the strong pseudepest with bases 2,3,5,7,11
and 13 before attempting to certify that it is prime. There are two advantadks tapproach. First, the
candidated” are relatively small (the numbers tested in case (I) had an average @fit¥0aahd the numbers
tested in case (Il) had an average of 52 digits). Secéhd, 1 has at most 6 prime factors, simplifying
the certification process. To achieJgP? > 100", 13 runs were required in case (I) and 14 runs were
required in case (I1). Together these runs give Theorem 6. A totl261520,174 primes were found in case
(1), and 104,942,148 primes were found in case (II). The computgranowas written in GNU C, utilizing
Arjen Lenstra’s Large Integer Package, and run on a network diie0Pentium PCs running LINUX O/S
in December 1996 (4,765 CPU hours total).

In 1991, Pomerance (see [30] and [25]) showed that

(7.2) lim inf

A modification of his argument, combined with the above computations, yields the straciger bound in
Theorem 7. Recall that (x; k) counts the totients: x, all of whose preimages are divisible by

Lemma 7.4. We have/ (z; a?) < V(z/a).
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Proof. The lemma is trivial whem = 1 so assume > 2. Letn be a totient withz/a < n < z. First
we show that for some integer> 0, a—*n is a totient with an pre-image not divisible ly. Suppose
#(m) = n. If a®> { m, takes = 0. Otherwise we can writen = a'r, wheret > 2 anda { r. Clearly
é(ar) = a'~'n, so we takes = ¢t — 1. Next, if n; andns are two distinct totients ifz/a, z], then
a~*n; # a~*2ny (Sincen; /ne cannot be a power af), so the mapping from totients {@:/a, | to totients
< x with a pre-image not divisible by? is one-to-one. Thu¥ (z) — V(x;a?) > V(z) — V(z/a). O

The above computations show thawifr) = n and A(n) = 1, thenz is divisible by eithera? or b2,
wherea andb are numbers greater than®001,850,00 ' Sypposer < b. By Lemma 7.4, we have

(7.2) Vi(e) < V(z/a) + V(e/b) < 2V (z/a).

Lemma 7.5. Suppose > 1,b > 0 andV;(x) < bV (z/a) for all z. Then

b
lim inf Vl((m)) < -
T—00 x a
Proof. Suppose: = liminf, “/}((’”)) > 0. For everye > 0 there is a numbet, such thatc > z implies

Vi(z)/V(z) > ¢ — €. For largez, setn = [log(z/z¢)/loga]. Then

Vi) Vi) VGl
V(e/a) Viefa?) " Viafar) © )
V(@) Viafa) | Viafa)
Vi) Vi(z/a) ~ Vi(z/a"1)
bn(c - 6) (aIL’o) _ O(m—log((c—e)/b)/loga).

V(z) =

(azo)

This contradicts the trivial bound (z) > z/log z if ¢ > 2+e&. Sinces is arbitrary, the lemma follows. OJ

Theorem 7 follows immediately. Further improvements in the lower bound foruatecexample to
Carmichael's Conjecture will produce corresponding upper bound&wmf, .. Vi(z)/V (z). Explicit
bounds for theO(1) term appearing in Theorem 1 (which would involve considerable work taiopb
combined with (7.2) should give a strong upper boundifersup,_, .. Vi(x)/V (z).

Next, supposed is a totient, all of whose pre-images; are divisible byk. The lower bound argument
given in Section 5 shows that for at least half of the numbersZ, the totientp(b)d has only the pre-images
bm,;. In particular, all of the pre-images of such totients are divisiblé lbyd Theorem 8 follows.

It is natural to ask for whict: do there exist totients, all of whose pre-images are divisiblg.bd short
search reveals examples for edck 11 exceptk = 6 andk = 10. Fork € {2,4,8}, taked = 2'®.257, for
k€ {3,9}, taked = 54 = 233, for k = 5 taked = 12500 = 4-5°, for k = 7, taked = 294 = 6-72 and for
k = 11, taked = 110. It appears that there might not be any totient, all of whose pre-imagedivasible
by 6, but | cannot prove this. Any totient with a unique pre-image must treategore-image divisible by 6,
so the non-existence of such numbers implies Carmichael’s Conjecture.

| believe that obtaining the asymptotic formula fgx) will require simultaneously determining the
asymptotics oV, (z)/V (z) (more will be said in section 8) arld(z; k)/V (z) for eachk. It may even be
necessary to classify totients more finely. For instance, takirg 4,k = 4 in the proof of Theorem 2
(section 5), the totients: constructed have—'(m) = {5n, 8n, 10n, 12n} for somen. On the other hand,
takingd = 6, k = 4 produces a different set of totients namely those witkp = (m) = {7n,9n, 14n, 18n}
for somen. Likewise, for any givenl with A(d) = k, the construction of totients in Section 5 may miss
whole classes of totients with multiplicity. There is much further work to be done in this area.
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8 Generalization to other multiplicative functions

The proofs of our theorems easily generalize to a wide class of multiplicaitbengtic functions with
similar behavior on primes, such a$n), the sum of divisors function. If : N — N is a multiplicative
arithmetic function, we analogously define

Vp={fm) n €N}, Vila) =[5 0[L,a]]

“Hm) = {n: f(n) =m}, Ap(m) =[f" (m)], Vir(z) = {m <@ : Ap(m) = K}
We now indicate the modifications to the previous argument needed to preeeerh 14. By itself, condi-
tion (1.11) is enough to prove the lower bound ¥¢1(z). Condition (1.12) is used only for the upper bound
argument and the lower bound fof ;. ().

The functionf(n) = n, which takes all positive integer values, is an example of why zero must be
excluded from the setin (1.11). Condition (1.12) insures that the vafug@b) for k& > 2 are not too small
too often, and thus have little influence on the siz&gir). It essentially forceg (h) to be a bit larger than
h'/2 on average. It's probable that (1.12) can be relaxed, but not too.nfactexample, the multiplicative

function defined byf(p) = p — 1 for primep, andf(p*) = p*~! for k > 2 clearly takes all integer values,
while

(8.1)

1
e K L
h>4, g;are—fullf(h) (10g2 h)Q
Condition (1.12) also insures that(m) is finite for eachf-valuem. For example, a function satisfying
f(p*) = 1 for infinitely many prime powerg” has the property that(m) = oo for every f-valuem.
In general, implied constants will depend on the functf¢n). One change that must be made throughout
is to replace every occurrence gf = 1” (when referring top(p)) with “ f(p)”, for instance in the definition
of S-normal primes in Section 2. Since the possible valueg(pj — p is a finite set, Lemma 2.6 follows
easily with the new definitions. The most substantial change to be made in S&dtiorever, is to Lemma
2.7, since we no longer have the bounff (n) < log, n at our disposal.

Lemma 2.7*. The number ofn € ¥} (x) for which eitherd?|m or d?|n for somen € f~1(m) andd > Y
is O(x(logy )% /Y29), whereK = max,(p — f(p))-

Proof. The number ofn with d?|m for somed > Y is O(x/Y). Now suppose?|n for somed > Y, and
let h = h(n) be the square-full part af (the largest squarefull divisor of). In particular,h(n) > Y?2.
From the fact thaf (p) > p — K for all primesp, we have

£n) = 1)1 fm) 3 L0 ogy o))

Thus, if f(n) < z, then

n n X
— (logy — ) < ——.
h (tog2 h> <Tm)
Therefore, the number of possiblewith a givenh is crudely< z(log, )%/ f(h). By (1.12), the total

number ofn is at most
K

z(1 x(1
< allogy 2 Y- s < (log, 2)* gj Uogy 7). 0

) Y26 Y26
h>Y?2

Applying Lemma 2.7 in the proof of Lemma 2.8 with™ = S'/2 yields the same bound as claimed, since
S > exp{(log, x)3¢}.

In Section 3, the only potential issue is with Lemma 3.1, but the analog &f < exp{—de™'}.

The only modification needed in Section 4 comes from the us&@f) > ¢(a)¢(b) in the argument
leading to (4.10). lfg; t w, the existing argument is fine. #f;|w, letj = max{i < L : ¢ < ¢i—1}-
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Sinceqr—2 > qr,j € {L —1,L}. Write f(q1---qrw) = f(q1---¢j—1)f(w'), wherew' = g;---qrw
and(z1,...,z;) € Zj(-Z((&, ..., &-1)). Putv = f(w’), use the analog of (4.6) to boud 1/v, and
otherwise follow the argument leading to (4.10).

In Section 5, there are several changes. For Lemma 5.1, the equatipmgb,have trivial solutions
coming from pairsp, p’ with f(p) = f(p). We say a prime is “bad” if f(p) = f(p’) for some prime
p’ # p and sayp is “good” otherwise. By (1.11) and Lemma 2.5, the number of bad priseg is
O(y/log?y), sozpbad 1/p converges. In Lemma 5.1, add the hypothesis thaptledg; are all “good”.

Possible small values df(p*) for somep* with k& > 2 are another complication. For each prijelefine

(8.2) Q(p) := min

Introduce another parametéfwhich will be the samé as in Theorem 2) and suppose< Ly — M where
M is a sufficiently large constant depending Bnandd. If follows from (1.12) and (8.2) that

Q(p)<d

In the definition of#, add the hypothesis that all primes are “good” and replace (5.16) b9(p;) >
max(d + K + 1,17) for everyi. Of course, (5.13) is changed fén) < z/d. Fortunately, the numbers in
2 are square-free by definition. Consider the analog of (5.18). SMge) > d + K for eachp;, if n|n;
and one of the primeg (0 < @ < L) occurs to a power greater than 1, theim,) > d¢(n). Therefore, the
L+ 1 largest prime factors of; occur to the first power only, which forces = nm; for somei (the trivial
solutions). For nontrivial solutions, we have at least one indexwhichp; # ¢;, and hence (p;) # f(q)
(since eaclp; is “good”). Other changes are more obvious.: In (5.5), the phrase-“1 andst + 1 are
unequal primes” is replace byt + a andst + o’ are unequal primes for some pair of numbgrs:’) with
a,a’ € P Here & denotes the set of possible valuesf¢p) — p. As & is finite, this poses no problem
in the argument. Similar changes are made in several places in the argundery teg5.7).

Only small, obvious changes are needed for Theorem 16. The resttib$6 needs very little attention,
as the bounds ultimately rely on Lemma 3.1 and the volume computations (which epeirtiEnt off).

It is not possible to prove analogs of Theorems 5-9 for gengsaltisfying the hypotheses of Theorem
14. One reason is that there might not be any “Carmichael Conjecturd’; ®g. A,(3) = 1, whereo is
the sum of divisors function. Furthermore, the proof of Theorem @deg on the identity(p?) = po(p)
for primesp. If, for somea # 0, f(p) = p + a for all primesp, then the argument of [15] shows that if
the multiplicity & is possible ana is a positive integer, then the multiplicityt is possible. For functions
such ass(n), for which the multiplicity 1 is possible, this completely solves the problem of theiples
multiplicities. For other functions, it shows at least that a positive propodiiomultiplicities are possible. If
multiplicity 1 is not possible, ang(p?) = pf(p), the argument in [16] shows that all multiplicities beyond
some point are possible.

We can, however, obtain information about the possible multiplicities for marergéf by an induction
argument utilizing the next lemma. Denotedy . . ., ax the possible values gf(p) — p for primep.

Lemma 7.1°. Supposed;(m) = k. Letp, ¢, s be primes and > 2 an integer so that
(1) (i) sandgq are “good” primes,

(2) (i) mf(s) = f(a),

(3) (i) f(s) =rp,

(4) (iv) pt f(=®) for every primer, integerb > 2 with f(7®) < mf(s),

(5) (v) dp — a; is composite foll < i < K andd|rm exceptd = r andd = rm.

ThenAs(mrp) = k4 Af(1).
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Proof. Let f~1(m) = {z1,...,zx} and supposég(z) = mrp. By condition (iv),p| f () for some primer
which dividesz to the first power. Thereforef,(7) = dp for some divisord of mr. Condition (v) implies
that the only possibilities fod ared = r ord = rm. If d = r, thenf(w) = rp = f(p) which forces
m = s by condition (i). By conditions (ii) and (iii), we havg(x/s) = m, which gives solutiong = sz;
(1 <i< k). Similarly, if d = rm, thent = g and f(x/q) = 1, which hasA (1) solutions. O

By the Chinese Remainder Theorem, there is an arithmetic progregssmrthat condition (v) is satisfied
for each numbep € <7, while still allowing eachrp + a; andrmp + a; to be prime. To eliminate primes
failing condition (iv), we need the asymptotic form of the Prif¢uples Conjecture due to Hardy and
Littlewood [21] (actually only the case whetg = 1 for eachi is considered in [21]; the conjectured
asymptotic fork arbitrary polynomials can be found in [3]).

Conjecture 2 (Prime k-tuples Conjecture (asymptotic versior§uppose, ..., a; are positive integers

andby, ..., by are integers so that no prime dividés;n + b;) - - - (axn + by) for every integen. Then for

some constan®'(a, b), the number ofi < z for whicha;n + by, ..., axn + by, are simultaneously prime is
~ C(a,b)—~

log® z

(x = zo(a,b)).

Using (1.12), we readily obtaif{z® : f(7°) < y,b > 2}| < y'~°. If s is taken large enough, the
number of possiblg < z satisfying condition (iv) (assumingandm are fixed and noting condition (iii)) is
o(z/log® x). The procedure for determining the set of possible multiplicities with this lemma vyt aie
on the behavior of the particular function. Complications can arise, formostafm is even and all of the
a; are even (which makes condition (i) impossible) or if the number of “bad” psime> =/ log® z.
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