
THE DISTRIBUTION OF TOTIENTS

KEVIN FORD

Dedicated to the memory of Paul Erdős (1913–1996)

ABSTRACT. This paper is a comprehensive study of the set of totients, i.e. the set of values taken by Euler’s
φ-function. We fist determine the true order of magnitude ofV (x), the number of totients6 x. We also show
that if there is a totient with exactlyk preimages underφ (a totient with “multiplicity“ k), then the counting
function for such totients,Vk(x), satisfiesVk(x) ≫k V (x). Sierpínski conjectured that every multiplicity
k > 2 is possible, and we deduce this from the Primek-tuples Conjecture. We also make some progress toward
an older conjecture of Carmichael, which states that no totient has multiplicity 1. The lower bound for a possible
counterexample is extended to1010

10

and the boundlim infx→∞ V1(x)/V (x) 6 10−5,000,000,000 is shown.
Determining the order ofV (x) andVk(x) also provides a description of the “normal” multiplicative structure
of totients. This takes the form of bounds on the sizes of the prime factors of a pre-image of a typical totient.
One corollary is that the normal number of prime factors of a totient6 x is c log log x, wherec ≈ 2.186.
Similar results are proved for the set of values taken by a general multiplicative arithmetic function, such as the
sum of divisors function, whose behavior is similar to that of Euler’s function.

1 Introduction
Let V denote the set of values taken by Euler’sφ-function (totients), i.e.

V = {1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, · · · }.

Let

V (x) = V ∩ [1, x],

V (x) = |V (x)|,
φ−1(m) = {n : φ(n) = m},

A(m) = |φ−1(m)|,
Vk(x) = |{m 6 x : A(m) = k}|.

(1.1)

We will refer toA(m) as the multiplicity ofm. This paper is concerned with the following problems.

1. What is the order ofV (x)?
2. What is the order ofVk(x) when the multiplicityk is possible?
3. What multiplicities are possible?
4. What is the normal multiplicative structure of totients?
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1.1 The order ofV (x)

The fact thatφ(p) = p − 1 for primesp impliesV (x) ≫ x/ log x by the Prime Number Theorem. Pillai
[28] gave the first non-trivial upper bound onV (x), namely

V (x) ≪ x

(log x)(log 2)/e
.

Using sieve methods, Erdős [8] improved this to

V (x) ≪ε
x

(log x)1−ε

for everyε > 0. Upper and lower bounds forV (x) were sharpened in a series of papers by Erdős [9], Erd̋os
and Hall [11, 12], Pomerance [29], and finally by Maier and Pomerance[26], who showed that

(1.2) V (x) =
x

log x
exp{(C + o(1))(log3 x)2}

for a constantC defined below. Herelogk x denotes thekth iterate of the logarithm. Let

(1.3) F (x) =
∞

∑

n=1

anxn, an = (n + 1) log(n + 1) − n log n − 1.

Sincean ∼ log n andan > 0, it follows thatF (x) is defined and strictly increasing on[0, 1), F (0) = 0 and
F (x) → ∞ asx → 1−. Thus, there is a unique number̺ such that

(1.4) F (̺) = 1 (̺ = 0.542598586098471021959 . . .).

In addition,F ′(x) is strictly increasing, and

F ′(̺) = 5.69775893423019267575 . . .

Let

(1.5) C =
1

2| log ̺| = 0.81781464640083632231 . . .

and

D = 2C(1 + log F ′(̺) − log(2C)) − 3/2

= 2.17696874355941032173 . . .
(1.6)

Our main result is a determination of the true order ofV (x).

Theorem 1. We have

V (x) =
x

log x
exp{C(log3 x − log4 x)2 + D log3 x − (D + 1/2 − 2C) log4 x + O(1)}.

1.2 The order ofVk(x)

Erdős [10] showed by sieve methods that ifA(m) = k, then for most primesp, A(m(p − 1)) = k. If the
multiplicity k is possible, thenVk(x) ≫ x/ log x. Applying the machinery used to prove Theorem 1, we
show that if there existsm with A(m) = k, then a positive proportion of totients have multiplicityk.

Theorem 2. For everyε > 0, if A(d) = k, then

Vk(x) ≫ε d−1−εV (x) (x > x0(d)).

Conjecture 1. For k > 2,

lim
x→∞

Vk(x)

V (x)
= Ck.
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x V (x) V2/V V3/V V4/V V5/V V6/V V7/V
1M 180,184 0.380727 0.140673 0.098988 0.042545 0.062730 0.020790
5M 840,178 0.379462 0.140350 0.102487 0.042687 0.063193 0.020373
10M 1,634,372 0.378719 0.140399 0.103927 0.042703 0.063216 0.020061
25M 3,946,809 0.378198 0.140233 0.105466 0.042602 0.063414 0.019819
125M 18,657,531 0.377218 0.140176 0.107873 0.042560 0.063742 0.019454
300M 43,525,579 0.376828 0.140170 0.108933 0.042517 0.063818 0.019284
500M 71,399,658 0.376690 0.140125 0.109509 0.042493 0.063851 0.019194

TABLE 1. Vk(x)/V (x) for 2 6 k 6 7

Table 1 lists values ofV (x) and the ratiosVk(x)/V (x) for 2 6 k 6 7. Numerical investigations seem
to indicate thatCk ≍ 1/k2. In fact, atx = 500, 000, 000 we have1.75 6 Vk(x)/V (x) 6 2.05 for
20 6 k 6 200. This data is very misleading, however. Erdős [8] showed that there are infinitely many
totients for whichA(m) > mc4 for some positive constantc4. The current record isc4 = 0.7039 [1].
Consequently, by Theorem 2, for infinitely manyk we have

Vk(x)

V (x)
≫ k−1/c4+ε ≫ k−1.42 (x > x0(k)).

Erdős has conjectured that everyc4 < 1 is admissible.
We also show that most totients have “essentially bounded” multiplicity.

Theorem 3. Uniformly forx > 2 andN > 2, we have

|{m ∈ V (x) : A(m) > N}|
V (x)

=
∑

k>N

Vk(x)

V (x)
≪ exp{−1

4(log2 N)2}.

Remark. The proof of [14, Theorem 3] contains an error, and the corrected proof (in Sec. 7.1 below)
gives the weaker estimate given in Theorem 3.

In contrast, the average value ofA(m) over totientsm 6 x is clearly > x/V (x) = (log x)1+o(1).
The vast differences between the “average” behavior and the “normal” behavior is a result of some totients
having enormous multiplicity.

A simple modification of the proof of Theorems 1 and 2 also gives bounds fortotients in short intervals.
A real numberθ is said to be admissible ifπ(x + xθ) − π(x) ≫ xθ/ log x with x sufficiently large. Here,
π(x) is the number of primes6 x. The current record is due to Baker, Harman and Pintz [2], who showed
thatθ = 0.525 is admissible.

Theorem 4. If θ is admissible,y > xθ and the multiplicityk is possible, then

Vk(x + y) − Vk(x) ≍ V (x + y) − V (x) ≍ y

x + y
V (x + y).

Consequently, for every fixedc > 1, V (cx) − V (x) ≍c V (x).

Erdős has asked ifV (cx) ∼ cV (x) for each fixedc > 1, which would follow from an asymptotic formula
for V (x). The method of proof of Theorem 1, however, falls short of answering Erd̋os’ question.

It is natural to ask what the maximum totient gaps are, in other words what is the behavior of the function
M(x) = maxvi6x(vi − vi−1) if v1, v2, · · · denotes the sequence of totients? Can it be shown, for example,
that forx sufficiently large, that there is a totient betweenx andx + x1/2?

1.3 The conjectures of Carmichael and Sierpínski

In 1907, Carmichael [4] announced that for everym, the equationφ(x) = m has either no solutionsx
or at least two solutions. In other words, no totient can have multiplicity 1. His proof of this assertion was
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flawed, however, and the existence of such numbers remains an open problem. In [5], Carmichael did show
that no numberm < 1037 has multiplicity 1, and conjectured that no suchm exists (this is now known as
Carmichael’s Conjecture). Klee [24] improved the lower bound for a counterexample to10400, Masai and
Valette [27] improved it to1010,000 and recently Schlafly and Wagon [34] showed that a counterexample
must exceed1010,000,000. An immediate corollary of Theorem 2 (taked = 1, k = 2 for the first part) is

Theorem 5. We have

lim sup
x→∞

V1(x)

V (x)
< 1.

Furthermore, Carmichael’s Conjecture is equivalent to the bound

lim inf
x→∞

V1(x)

V (x)
= 0.

Although this is a long way from proving Carmichael’s Conjecture, Theorem5 show that the set of
counterexamples cannot be a “thin” subset ofV . Either there are no counterexamples or a positive fraction
of totients are counterexamples.

The basis for the computations of lower bounds for a possible counterexample is a lemma of Carmichael
and Klee (Lemma 7.2 below), which allows one to show that ifA(m) = 1 thenx must be divisible by the
squares of many primes. Extending the method outlined in [34], we push the lower bound for a counterex-
ample to Carmichael’s Conjecture further.

Theorem 6. If A(m) = 1, thenm > 101010

.

As a corollary, a variation of an argument of Pomerance [30] gives the following.

Theorem 7. We have

lim inf
x→∞

V1(x)

V (x)
6 10−5,000,000,000.

The proof of these theorems motivates another classification of totients. LetV (x; k) be the number of
totients up tox, all of whose pre-images are divisible byk. A trivial corollary to the proof of Theorem 2 is

Theorem 8. If d is a totient, all of whose pre-images are divisible byk, then

V (x; k) ≫ε d−1−εV (x).

Thus, for eachk, eitherV (x; k) = 0 for all x or V (x; k) ≫k V (x).

In the 1950’s, Sierpínski conjectured that all multiplicitiesk > 2 are possible (see [31] and [10]), and
in 1961, Schinzel [32] deduced this conjecture from his well-known Hypothesis H. Schinzel’s Hypothesis
H [33], a generalization of Dickson’s Primek-tuples Conjecture [7], states that any set of polynomials
F1(n), . . . , Fk(n), subject to certain restrictions, are simultaneously prime for infinitely manyn. Using a
much simpler, iterative argument, we show that Sierpiński’s Conjecture follows from the Primek-tuples
Conjecture.

Theorem 9. The Primek-tuples Conjecture implies that for eachk > 2, there is a numberd with A(d) = k.

Shortly after [14] was published, the author and S. Konyagin proved Sierpiński’s conjecture uncondition-
ally for evenk [15]. The conjecture for oddk was subsequently proved by the author [16] using a variant of
Lemma 7.1 below.



THE DISTRIBUTION OF TOTIENTS 5

1.4 The normal multiplicative structure of totients

Establishing Theorems 1 and 2 requires a determination of what a “normal” totient looks like. This will
initially take the form of a series of linear inequalities in the prime factors of a pre-image of a totient. An
analysis of these inequalities reveals the normal sizes of the prime factors ofa pre-image of a typical totient.
To state our results, we first define

(1.7) L0 = L0(x) = ⌊2C(log3 x − log4 x)⌋.
In a simplified form, we show that for all buto(V (x)) totientsm 6 x, every pre-imagen satisfies

(1.8) log2 qi(n) ∼ ̺i(1 − i/L0) log2 x (0 6 i 6 L0),

whereqi(n) denotes the(i + 1)st largest prime factor ofn. For brevity, we writeV (x; C ) for the number of
totientsm 6 x which have a pre-imagen satisfying conditionC . Also, let

βi = ̺i(1 − i/L0) (0 6 i 6 L0 − 1).

Theorem 10. Suppose1 6 i 6 L0. (a) If 0 < ε 6 i
3L0

, then

V

(

x;

∣

∣

∣

∣

log2 qi(n)

βi log2 x
− 1

∣

∣

∣

∣

> ε

)

≪ V (x) exp

{

−L0(L0 − i)

4i
ε2 + log

(

i

εL0

)}

.

(b) If i
3L0

6 ε 6 1
8 , then

V

(

x;

∣

∣

∣

∣

log2 qi(n)

βi log2 x
− 1

∣

∣

∣

∣

> ε

)

≪ V (x) exp
{

− 1
13L0ε

}

.

Using Theorem 10, we obtain a result about simultaneous approximation ofq1(n), q2(n), . . ..

Theorem 11. SupposeL0 = L0(x), 0 6 g 6 1
3

√

L0

log L0
and0 6 h 6 1

2L0. The number of totientsm 6 x

with a pre-imagen not satisfying

(1.9)

∣

∣

∣

∣

log2 qi(n)

βi log2 x
− 1

∣

∣

∣

∣

> g

√

i log(L0 − i)

L0(L0 − i)
(1 6 i 6 L0 − h)

is
≪ V (x)

(

e−h/96 + e−
1

2
g2 log g + e−

1

14
g
√

log L0

)

.

Notice that the intervals in (1.9) are not only disjoint, but the gaps between them are rather large. In
particular, this “discreteness phenomenon” means that for anyε > 0 and most totientsm 6 x, no pre-image
n has any prime factorsp in the intervals

1 − ε >
log2 p

log2 x
> ̺ + ε, ̺ − ε >

log2 p

log2 x
> ̺2 + ε, etc.

This should be compared to the distribution of the prime factors of a normal integer n 6 x (e.g. Theorem
12 of [20]; see also subsection 1.5 below).

For a preimagen of a typical totient, we expect eachqi(n) to be “normal”, that is,ω(qi(n) − 1) ≈
log2 qi(n), whereω(m) is the number of distinct prime factors ofm. This suggests that for a typical totient
v 6 x,

Ω(v) ≈ ω(v) ≈ (1 + ̺ + ̺2 + · · · ) log2 x =
log2 x

1 − ̺
.

Theorem 12. Supposeη = η(x) satisfies0 6 η 6 1/3. Then

#

{

m ∈ V (x) :

∣

∣

∣

∣

Ω(m)

log2 x
− 1

1 − ̺

∣

∣

∣

∣

> η

}

≪ V (x)

(log2 x)η/10
.
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Consequently, ifg(x) → ∞ arbitrarily slowly, then almost all totientsm 6 x satisfy
∣

∣

∣

∣

Ω(m)

log2 x
− 1

1 − ̺

∣

∣

∣

∣

6
g(x)

log3 x
.

Moreover, the theorem holds withΩ(m) replaced byω(m).

Corollary 13. If eitherg(m) = ω(m) or g(m) = Ω(m), then

∑

m∈V (x)

g(m) =
V (x) log2 x

1 − ̺

(

1 + O

(

1

log3 x

))

.

By contrast, Erd̋os and Pomerance [13] showed that the average ofΩ(φ(n)), where the average is taken
over alln 6 x, is 1

2(log2 x)2 + O((log2 x)3/2).

1.5 Heuristic arguments

As the details of the proofs of these results are very complex, we summarize the central ideas here. For
most integersm, the prime divisors ofm are “nicely distributed”, meaning the number of prime factors of
m lying betweena andb is aboutlog2 b − log2 a. This is a more precise version of the classical result of
Hardy and Ramanujan [22] that most numbersm have aboutlog2 m prime factors. Take an integern with
prime factorizationp0p1 · · · , where for simplicity we assumen is square-free, andp0 > p1 > · · · . By
sieve methods it can be shown that for most primesp, the prime divisors ofp − 1 have the same “nice”
distribution. Ifp0, p1, . . . are such “normal” primes, it follows thatφ(n) = (p0 − 1)(p1 − 1) · · · has about
log2 n− log2 p1 prime factors in[p1, n], about2(log2 p1 − log2 p2) prime factors in[p2, p1], and in general,
φ(n) will have k(log2 pk−1 − log2 pk) prime factors in[pk, pk−1]. That is,n hask times as many prime
factors in the interval[pk, pk−1] as does a “normal” integer of its size. Ifn has many “large” prime divisors,
then the prime factors ofm = φ(n) will be much denser than normal, and the number,N1, of such integers
m will be “small”. On the other hand, the number,N2 of integersn with relatively few “large” prime factors
is also “small”. Our objective then is to precisely define these concepts of “large” and “small” so as to
minimizeN1 + N2.

The argument in [26] is based on the heuristic that a normal totient is generated from a numbern satisfying

(1.10) log2 qi(n) ≈ ̺i log2 x

for eachi (compare with (1.8)). As an alternative to this heuristic, assuming all prime factors of a pre-image
n of a totient are normal leads to consideration of a series of inequalities amongthe prime factors ofn.
We show that suchn generate “most” totients. By mapping theL largest prime factors ofn (excluding the
largest) to a point inRL, the problem of counting the number of suchn 6 x reduces to the problem of
finding the volume of a certain region ofRL, which we call the fundamental simplex. Our result is roughly

V (x) ≈ x

log x
max

L
TL(log2 x)L,

whereTL denotes the volume of the simplex. It turns out that the maximum occurs atL = L0(x) + O(1).
Careful analysis of these inequalities reveals that “most” of the integersn for which they are satisfied satisfy
(1.8). Thus, the heuristic (1.10) gives numbersn for which the smaller prime factors are slightly too large.
The crucial observation that theLth largest prime factor (L = L0 − 1) satisfieslog2 pL ≈ 1

L̺L log2 x is a
key to determining the true order ofV (x).

In Section 2 we define “normal” primes and show that most primes are “normal”. The set of linear
inequalities used in the aforementioned heuristic are defined and analyzed inSection 3. The principal result
is a determination of the volume of the simplex defined by the inequalities, which requires excursions into
linear algebra and complex analysis. Section 4 is devoted to proving the upper bound forV (x), and in
section 5, the lower bound forVk(x) is deduced. Together these bounds establish Theorems 1 and 2, as well
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as Theorems 4, 5 and 8 as corollaries. The distribution of the prime factors of a pre-image of a typical totient
are detailed in Section 6, culminating in the proof of Theorems 10–12 and Corollary 13.

In Section 7, we summarize the computations giving Theorem 6, present very elementary proofs of The-
orems 7 and 9, prove Theorem 3 and discuss other problems aboutV (x; k). Lastly, Section 8 outlines an
extension of all of these results to more general multiplicative arithmetic functions such asσ(n), the sum of
divisors function. Specifically, we prove

Theorem 14. Supposef : N → N is a multiplicative function satisfying

{f(p) − p : p prime} is a finite set not containing 0,(1.11)
∑

h square-full

hδ

f(h)
≪ 1, for someδ > 0.(1.12)

Then the analogs of Theorems 1–4, 8, 10–13 and 16 hold withf(n) replacingφ(n), with the exception of
the dependence ond in Theorems 2 and 8, which may be different.

Some functions appearing in the literature which satisfy the conditions of Theorem 14 areσ(n), the sum
of divisors function,φ∗(n), σ∗(n) andψ(n). Hereφ∗(n) andσ∗(n) are the unitary analogs ofφ(n) and
σ(n), defined byφ∗(pk) = pk − 1 andσ∗(pk) = pk + 1 [6], andψ(n) is Dedekind’s function, defined
by ψ(pk) = pk + pk−1. Now consider, for fixeda 6= 0, the function defined byf(pk) = (p + a)k for
p > p0 := min{p : p + a > 2} andf(pk) = (p0 + a)k for p < p0. Then the range off is the multiplicative
semigroup generated by the shifted primesp + a for p > 1 − a.

Corollary 15. For a fixed nozeroa, let V (a)(x) be the counting function of the multiplicative semigroup
generated by the shifted primes{p + a : p + a > 2}. Then

V (a)(x) ≍a
x

log x
exp{C(log3 x − log4 x)2 + D log3 x − (D + 1/2 − 2C) log4 x}.

One further theorem, Theorem 16, depends on the definition of the fundamental simplex, and is not stated
until Section 6.

Acknowledgement:The author is grateful to Paul Pollack for carefully proofreading of themanuscript and
for catching a subtle error in the proof of the lower bound in Theorem 1.

2 Preliminary lemmata

Let P+(n) denote the largest prime factor ofn and letΩ(n, U, T ) denote the total number of prime
factorsp of n such thatU < p 6 T , counted according to multiplicity. Constants implied by the Landau
O and Vinogradov≪ and≫ symbols are absolute unless otherwise specified, andc1, c2, . . . will denote
absolute constants, not depending on any parameter. Symbols in boldfacetype indicate vector quantities.

A small set of additional symbols will have constant meaning throughout this paper. These include the
constantsV , ̺, C, D, ai, defined respectively in (1.1), (1.4), (1.5), (1.6), and (1.3), as wellas the constants
SL, TL, gi andg∗i , defined in section 3. Also included are the following functions: the functions defined
in (1.1), L0(x) (1.7), F (x) (1.3); the functionsQ(α) andW (x) defined respectively in Lemma 2.1 and
(2.5) below; andSL(ξ), TL(ξ), RL(ξ; x), RL(ξ; x) andxi(n; x) defined in section 3. Other variables are
considered “local” and may change meaning from section to section, or from lemma to lemma.

A crucial tool in the proofs of Theorems 1 and 2 is a more precise version of the result from [26] that for
most primesp, the larger prime factors ofp − 1 are nicely distributed (see Lemma 2.6 below). We begin
with three basic lemmas.
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Lemma 2.1. If z > 0 and0 < α < 1 < β then
∑

k6αz

zk

k!
< e(1−Q(α))z,

∑

k>βz

zk

k!
< e(1−Q(β))z,

whereQ(λ) =
∫ λ
1 log t dt = λ log(λ) − λ + 1.

Proof. We have

∑

k6αz

zk

k!
=

∑

k6αz

(αz)k

k!

(

1

α

)k

6
(

1

α

)αz
∑

k6αz

(αz)k

k!
<

( e

α

)αz
= e(1−Q(α))z.

The second inequality follows in the same way. ¤

Lemma 2.2. The number of integersn 6 x for whichΩ(n) > α log2 x is

≪α

{

x(log x)−Q(α) 1 < α < 2

x(log x)1−α log 2 log2 x α > 2.

Proof. This can be deduced from the Theorems in Chapter 0 of [20]. ¤

Lemma 2.3. The number ofn 6 x divisible by a numberm > exp{(log2 x)2} with P+(m) 6 m2/ log2 x is
≪ x/ log2 x.

Proof. Let Ψ(x, y) denote the number of integers6 x which have no prime factors> y. For x large,
standard estimates ([23], Theorem 1.1 and Corollary 2.3) give

Ψ(z, z2/ log2 x) ≪ z exp{−(log2 x log3 x)/3}
uniformly for z > exp{(log2 x)2}. The lemma follows by partial summation. ¤

We also need basic sieve estimates ([19], Theorems 4.1, 4.2).

Lemma 2.4. Uniformly for1.9 6 y 6 z 6 x, we have

|{n 6 x : p|n =⇒ p 6∈ (y, z]}| ≪ x
log y

log z
.

Lemma 2.5. Supposea1, . . . , ah are positive integers andb1, . . . , bh are integers such that

E =
h

∏

i=1

ai

∏

16i<j6h

(aibj − ajbi) 6= 0.

Then

#{n 6 x : ain + bi prime(1 6 i 6 h)} ≪h
x(log2(|E| + 10))h

(log z)h
.

Next, we examine the normal multiplicative structure of shifted primesp − 1.

Definition 1. WhenS > 2, a primep is said to beS-normal if

(2.1) Ω(p − 1, 1, S) 6 2 log2 S

and, for every pair of real numbers(U, T ) with S 6 U < T 6 p − 1, we have

(2.2) |Ω(p − 1, U, T ) − (log2 T − log2 U)| <
√

log2 S log2 T .

We remark that (2.1) and (2.2) imply that for anS-normal primep > S,

(2.3) Ω(p − 1) 6 3 log2 p.

This definition is slightly weaker than, and also simpler than, the definition ofS-normal given in [14].
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Lemma 2.6. Uniformly forx > 3 andS > 2, the number of primesp 6 x which are notS-normal is

≪ x(log2 x)5

log x
(log S)−1/6.

Proof. Assumex is sufficiently large andS > log1000 x, otherwise the lemma is trivial. Also, iflog S >
(log x)6, then (2.1) implies that the number ofp in question is

6 x
∑

n6x

(3/2)Ω(n)−2 log2 S

n
≪ x

(log x)3/2

(log S)2 log(3/2)
≪ x

(log x)(log S)0.3
.

Next, assumelog S 6 (log x)6. By Lemmas 2.2 and 2.3, the number of primesp 6 x with eitherp <
√

x,
q := P+(p − 1) 6 x2/ log2 x, Ω(p − 1) > 10 log2 x or p − 1 divisible by the square of a prime> S, is
O(x/ log2 x). Let p be a prime not in these categories, which is also notS-normal. Writep − 1 = qb. By
(2.1) and (2.2), either (i)Ω(b, 1, S) > 2 log2 S−1 or (ii) for someS 6 U < T 6 x, |Ω(b, U, T )−(log2 T −
log2 U)| >

√

log2 S log2 T − 1. By Lemma 2.5, for eachb, the number ofq is

≪ x

φ(b) log2(x/b)
≪ x(log2 x)3

b log2 x
.

If S 6 x, the sum of1/b overb satisfying (i) is

6
∑

P+(b′)6S
Ω(b′)>2 log2 S−1

1

b′
∏

S<p6x

(

1 +
1

p

)

≪ log x

log S

(

3

2

)1−2 log2 S
∑

P+(b′)6S

(3/2)Ω(b′)

b′

≪ (log x)(log S)1/2−2 log(3/2) ≪ (log x)(log S)−0.3,

and otherwise the sum is

6
∑

b′6x
Ω(b′)>2 log2 S−1

1

b′
≪

(

3

2

)1−2 log2 S
∑

b′6x

(3/2)Ω(b′)

b′
≪ (log x)3/2

(log S)2 log(3/2)
≪ log x

(log S)0.3
.

Considerb satisfying (ii). In particular,S 6 x. For positive integersk, let tk = eek
. For some integers

j, k satisfyinglog2 S − 1 6 j < k 6 log2 x + 1, we have

(2.4) |Ω(b, tj , tk) − (k − j + 1)| >
√

(k − 1) log2 S − 4,

for otherwise iftj 6 U 6 tj+1 andtk 6 T < tk+1, thenΩ(b, tj+1, tk) 6 Ω(b, U, T ) 6 Ω(b, tj , tk+1),

implying (2.2). Now fixj, k and leth =
√

(k − 1) log2 S − 4. For any integerl > 0,

∑

Ω(b,tj ,tk)=l

1

b
6

∏

p6tj

(

1 +
1

p

)

∏

tk<p6x

(

1 +
1

p

)

1

l!

(

∑

tj<p6tk

1

p

)l

≪ ej−k log x
(k − j + 1)l

l!
.

Summing over|l − (k − j + 1)| > h using Lemma 2.1, we see that for each pair(j, k), there are

≪ x(log2 x)3

log x
e−(k−j)Q(β)

primes satisfying (ii), whereβ = 1+ h
k−j+1 . Here we used the fact thatQ(1−λ) > Q(1+λ) for 0 < λ 6 1.

By the integral representation ofQ(x), we haveQ(1+λ) > λ
2 log(1+λ). Also,h > 0.99

√

k log2 S > 990.
If h > k − j + 1, then

(k − j)Q(β) >
h(k − j) log 2

2(k − j + 1)
>

h log 2

4
>

log2 S

6
,
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and ifh < k − j + 1, then

(k − j)Q(β) >
(k − j) log 2

2

(

h

k − j + 1

)2

>
h2

3(k − j + 1)
>

log2 S

4
.

As there are6 (log2 x)2 choices for the pair(j, k), the proof is complete. ¤

Lemma 2.7. There areO(x log2 x
Y ) numbersm ∈ V (x) with eitherm or somen ∈ φ−1(m) divisible byd2

for somed > Y .

Proof. If φ(n) 6 x, then from a standard estimate,n ≪ x log2 x. Now
∑

d>Y z/d2 ≪ z/Y . ¤

Our next result says roughly that most totients have a preimage which isS-normal for an appropriateS,
and that neither the totient nor preimage has a large square factor or a large number of prime factors.

Definition 2. A totientm is said to beS-nice if

(a) Ω(m) 6 5 log2 m,
(b) d2|m or d2|n for somen ∈ φ−1(m) impliesd 6 S1/2,
(c) for all n ∈ φ−1(m), n is divisible only byS-normal primes.

Now let

(2.5) W (x) = max
26y6x

V (y) log y

y
.

Lemma 2.8. Uniformly forx > 3 and2 6 S 6 x, the number ofm ∈ V (x) which are notS-nice is

O

(

xW (x)(log2 x)6

log x
(log S)−1/6

)

.

Proof. We may supposeS > exp{(log2 x)36}, for otherwise the lemma is trivial. By Lemmas 2.2 and
2.7, the number of totients failing (a) or failing (b) isO(x/ log2 x). Supposep is a prime divisor ofn for
somen ∈ φ−1(m). If n = n′p then eitherφ(n) = (p − 1)φ(n′) or φ(n) = pφ(n′), so in either case
φ(n′) 6 x/(p − 1). Let G(t) denote the number of primesp 6 t which are notS-normal. By Lemma 2.6,
the number ofm failing (c) is at most

2
∑

p

V

(

x

p − 1

)

≪
∑

p

xW (x/(p − 1))

(p − 1) log(x/p)

≪ xW (x)

∫ x/2

2

G(t)dt

t2 log(x/t)
≪ xW (x)(log2 x)6

log x
(log S)−1/6. ¤

3 The fundamental simplex

For a natural numbern, write n = q1q2 · · · , whereq1 > q2 > · · · , qi are prime fori 6 Ω(n) andqi = 1
for i > Ω(n). ForS ⊆ [0, 1]L, let RL(S ; y) denote the set of integersn with Ω(n) 6 L and

(

max(0, log2 qi)

log2 y
, . . . ,

max(0, log2 qL)

log2 y

)

∈ S ,

wheremax(0, log2 1) is defined to be 0. Also set

(3.1) RL(S ; y) =
∑

n∈RL(S ;y)

1

φ(n)
.
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Heuristically,RL(S ; x) ≈ (log2 y)L Vol(S ). Our result in this direction relatesRL(S ; y) to the volume
of perturbations ofS . Specifically, lettingS +v denote the translation ofS by the vectorv, for ε > 0 let

S
+ε =

⋃

v∈[−ε,ε]L

(S + v) , S
−ε =

⋂

v∈[−ε,ε]L

(S + v) .

Lemma 3.1. Lety > 2000, ε = 1/ log2 y and supposeS ⊆ {x ∈ RL : 0 6 xL 6 · · · 6 x1 6 1}. Then

(log2 y)L Vol
(

S
−ε

)

≪ RL(S ; y) ≪ (log2 y)L Vol
(

S
+ε

)

.

Proof. For positive integersm1, . . . , mL, let B(m) =
∏L

i=1[(mi − 1)ε, miε). If B is the set of boxes
B(m) entirely contained inS , then the union of these boxes containsS −ε. Moreover, for each box,
m1 > m2 > . . . > mL > 1. Form > 1, there is at least one prime inIm := [exp(em−1), exp(em)), thus

RL(S ; y) >
∑

B(m)∈B

L
∏

i=1

∑

mi−16log2 p<mi

1

p − 1

=
∑

B(m)∈B

L
∏

i=1

max
(

exp{−emi}, 1 + O(e−mi)
)

≫ |B| > (log2 y)L Vol(S −ε).

For the second part, supposeS is nonempty and letB be the set of boxesB(m) which intersectS , so that
their union is contained inS +ε. ForB(m) ∈ B, let jm = |{i : mi = m}|. Then

RL(S ; y) 6
∑

B(m)∈B

∏

m>1

U(m, jm), U(m, j) =
∑

r16···6rj ,ri∈Im

1

φ(r1 · · · rj)
.

Here eachri is prime, except that whenm = 0 we allowri = 1 also. We haveU(0, j) 6
∑

P+(n)613 1/φ(n) ≪
1. Now supposem > 1 and letj = jm. For eachr1, . . . , rj , write r1 · · · rj = kh, where(k, h) = 1, k is
squarefree andh is squarefull. Also letℓ = ω(k). Setting

tm =
∑

h squarefull
p|h =⇒ p∈Im

1

φ(h)
, sm =

∑

p∈Im

1

p − 1
= 1 + O(e−m),

we have

U(m, j) 6
sj
m

j!
+ tm

j−2
∑

ℓ=0

sℓ
m

ℓ!
6

sj
m

j!
+ tmesm 6 1 + O(e−m).

We conclude that

RL(S ; y) ≪
∑

B(m)∈B

∏

m>1

(1 + O(e−m)) ≪ |B| 6 (log2 y)L Vol(S +ε). ¤

Supposeξi > 0 for 0 6 i 6 L−1. Recall (1.3) and letS ∗
L(ξ) be the set of(x1, . . . , xL) ∈ RL satisfying

(I0) a1x1 + a2x2 + · · · + aLxL 6 ξ0,

(I1) a1x2 + a2x3 + · · · + aL−1xL 6 ξ1x1,

...
...

(IL−2) a1xL−1 + a2xL 6 ξL−2xL−2,

(IL−1) 0 6 xL 6 ξL−1xL−1.

and letSL(ξ) be the subset ofS ∗
L(ξ) satisfying0 6 xL 6 · · · 6 x1 6 1. Define

T ∗
L(ξ) = Vol(S ∗

L(ξ)), TL(ξ) = Vol(SL(ξ)).
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For convenience, let1 = (1, 1, . . . , 1), SL = SL(1) (the “fundamental simplex”),TL = Vol(SL), S ∗
L =

S ∗
L(1), andT ∗

L = Vol(S ∗
L). We first relateSL(ξ) to SL. The next lemma is trivial.

Lemma 3.2. If ξi > 1 for all i, andx ∈ SL(ξ), theny ∈ SL, whereyi = (ξ0 · · · ξi−1)
−1xi. If 0 < ξi 6 1

for all i andy ∈ SL, thenx ∈ SL(ξ), wherexi = (ξ0 · · · ξi−1)yi.

Corollary 3.3. DefineH(ξ) = ξL
0 ξL−1

1 · · · ξ2
L−2ξL−1. We haveTL 6 TL(ξ) 6 H(ξ)TL whenξi > 1 for all

i, andH(ξ)TL 6 TL(ξ) 6 TL when0 < ξi 6 1 for all i.

In applications,H(ξ) will be close to 1, so we concentrate on boundingTL.

Lemma 3.4. We have

T ∗
L ≍ TL ≍ ̺L(L+3)/2

L!
(F ′(̺))L.

Corollary 3.5. If H(ξ) ≍ 1, then

TL(ξ) ≍ TL(ξ) ≍ ̺L(L+3)/2

L!
(F ′(̺))L.

Furthermore, ifL = 2C(log3 x − log4 x) − Ψ, where0 6 Ψ ≪
√

log3 x, then

(log2 x)LTL(ξ) = exp{C(log3 x − log4 x)2 + D log3 x − (D + 1/2 − 2C) log4 x

− Ψ2/4C − (D/2C − 1)Ψ + O(1)}.
If L = [2C(log3 x − log4 x)] − Ψ > 0, then

(log2 x)LTL(ξ) ≪ exp{C(log3 x − log4 x)2 + D log3 x − (D + 1/2 − 2C) log4 x

− Ψ2/4C − (D/2C − 1)Ψ}.
Proof. The second and third parts follow from (1.5), (1.6) and Stirling’s formula. ¤

To prove Lemma 3.4, we first give a variant of a standard formula for the volume of tetrahedra, then an
asymptotic for a sequence which arises in the proof.

Lemma 3.6. Supposev0,v1, . . . ,vL ∈ RL, anyL of which are linearly independent, and

(3.2) v0 +
L

∑

i=1

bivi = 0,

wherebi > 0 for everyi. Also supposeα > 0. The volume,V , of the simplex

{x ∈ RL : vi · x 6 0 (1 6 i 6 L),v0 · x 6 α}
is

V =
αL

L!(b1b2 · · · bL)|det(v1, . . . ,vL)| .

Proof. We may assume thatα = b1 = b2 = · · · = bL = 1, for the general case follows by suitably scaling
the vectorsvi. The vertices of the simplex are0,p1, · · · ,pL, wherepi satisfies

{

pi · vj = 0 (1 6 j 6 L, j 6= i);

pi · v0 = 1.

Taking the dot product ofpi with each side of (3.2) yieldsvi ·pi = −1, sopi lies in the region{vi ·x 6 0}.
Also, 0 lies in the half-planev0 · x 6 α. The given region is thus anL-dimensional “hyper-tetrahedron”
with volume|det(p1, · · · ,pL)|/L!, and(p1, · · · ,pL)(v1, · · · ,vL)T = −I, whereI is the identity matrix.
Taking determinants gives the lemma. ¤
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Having 2L − 2 inequalities definingSL creates complications estimatingTL, so we devise a scheme
where onlyL + 1 inequalities are considered at a time, thus allowing the use of Lemma 3.6. The numbers
bi occurring in that lemma will come from the sequence{gi}, defined by

(3.3) g0 = 1, gi =
i

∑

j=1

ajgi−j (i > 1).

Lemma 3.7. For everyi > 1, |gi − λ̺−i| 6 5, whereλ = 1
̺F ′(̺) .

Proof. Write 1 − F (z) = (1 − z/̺)l(z) andl(z) =
∑∞

n=0 lnzn. By (1.4),

ln = ̺−m

(

1 −
n

∑

k=1

ak̺
k

)

=
∞

∑

k=1

̺kan+k > 0.

Next considerk(z) = (1 − z)2l(z) =
∑∞

n=0 knzn. We havek0 = 1, k1 = l1 − 2 = ̺−1 − a1 − 2 < 0 and

kn = ln − 2ln−1 + ln−2 =
∞

∑

k=1

̺k (an+k − 2an+k−1 + an+k−2) < 0 (n > 2).

Also, kn = O(1/n2), and
∑

n>1 kn = −1. Thus,k(z) is analytic for|z| < 1, continuous on|z| 6 1, and
nonzero for|z| 6 1, z 6= 1. Further,

ℜk(z) > 1 + k1ℜz − (1 + k1) = |k1|ℜ(1 − z),

so that for|z| < 1,
∣

∣

∣

∣

1

l(z)

∣

∣

∣

∣

6
|1 − z|2

|k1|ℜ(1 − z)
6

1

|k1|
max
|z|=1

|1 − z|2
ℜ(1 − z)

=
2

|k1|
< 3.7.

Now let

e(z) =
∞

∑

n=0

(

gn − λ̺−i
)

zn =
1

1 − F (z)
− λ

1 − z/̺
=

1/l(z) − 1/l(̺)

1 − z/̺
.

From the preceding arguments, we see thate(z) is analytic for|z| < 1 and continuous on|z| 6 1. By the
maximum modulus principle,max|z|=1 |e(z)| 6 (3.7 + λ)/|1/̺ − 1| 6 5. By Cauchy’s integral formula,
the Taylor coefficients ofe(z) are all bounded by 5 in absolute value. ¤

Remark1. The above proof is based on [17], and is much simpler than the original proof given in [14].
With more work, one can show that fori > 1, the numbersgi − λ̺−i are negative, increasing and have sum
−1 + λ/(1 − ̺) = −0.2938 . . .

Proof of Lemma 3.4.The basic idea is thatS ∗
L is only slightly larger thanSL. In other words, the inequal-

ities1 > x1 > · · · > xL−1 are relatively insignificant. Set

U0 = S
∗
L ∩ {x1 > 1}, Ui = S

∗
L ∩ {xi < xi+1} (1 6 i 6 L − 2)

andVi = Vol(Ui). Evidently

(3.4) T ∗
L −

L−2
∑

i=0

Vi 6 TL 6 T ∗
L.

Let e1, · · · , eL denote the standard basis forRL, i.e. ei · x = xi. For1 6 i 6 L − 2, set

(3.5) vi = −ei +

L−i
∑

j=1

ajei+j
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and also

v0 =
L

∑

j=1

ajej , vL−1 = −eL−1 + eL, vL = −eL.

For convenience, define

(3.6) g∗0 = 1, g∗i = gi + (1 − a1)gi−1 (i > 1).

Thus, for1 6 j 6 L − 2, inequality (Ij) may be abbreviated asvj · x 6 0. Also, inequality (I0) is
equivalent tov0 ·x 6 1 and (IL−1) is represented byvL−1 ·x 6 0 andvL ·x 6 0. By (3.3), (3.5) and (3.6),

(3.7) ei = −
L−1
∑

j=i

gj−ivj − g∗L−ivL.

It follows that

(3.8) v0 +

L−1
∑

j=1

gjvj + g∗LvL = 0.

Since|det(v1, · · · ,vL)| = 1, Lemma 3.6 and (3.8) give

(3.9) T ∗
L =

1

L!(g1 · · · gL−1)g∗L
.

Lemma 3.7 now implies the claimed estimate forT ∗
L.

For the remaining argument, assumeL is sufficiently large. We shall show that

(3.10)
L−2
∑

i=0

Vi < 0.61T ∗
L,

which, combined with (3.4), (3.9) and Lemma 3.7, proves Lemma 3.4.
Combiningx1 > 1 with v0 · x 6 1 givesu · x 6 0, whereu = v0 − e1. By (3.7) and (3.8),

u =
L−1
∑

j=1

(gj−1 − gj)vj + (g∗L−1 − g∗L)vL.

Thus

v0 +
a1

1 − a1
u +

L
∑

j=2

bjvj = 0,

where

bj = gj +
a1

1 − a1
(gj − gj−1) (2 6 j 6 L − 1),

bL = g∗L +
a1

1 − a1
(g∗L − g∗L−1).

Lemma 3.7 impliesbj > (9/7)gj for largej, In addition,|det(u,v2, . . . ,vL)| = (1− a1). By Lemma 3.6,

(3.11) V0 ≪ 1

L!(b2b3 · · · bL)
≪

(

7

9

)L

T ∗
L.

We next show that

(3.12) Vi =
1

(1 − a1)L!(g1 · · · gi−1)AiBi

L−1
∏

j=i+2

(

1

gj + Bihj−i

)

1

g∗L + Bih∗
L−i

,
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where
Ai = gi +

gi+1

1 − a1
, Bi =

gi+1

1 − a1
, hl = gl − gl−1, h∗

l = hl + (1 − a1)hl−1.

In Ui we have (Ii) andxi 6 xi+1, hence

xi+1 >
1

1 − a1
(a2xi+2 + · · · + aL−ixL) > xi+2 + a2xi+3 + · · · + aL−i−1xL.

The conditionvi+1 · x 6 0 is therefore implied by the other inequalities definingUi, which means

Vi = Vol{v0 · x 6 1;vj · x 6 0 (1 6 j 6 L, j 6= i + 1); (ei − ei+1) · x 6 0}.
We note|det(v1, · · · ,vi, ei − ei+1,vi+2, · · · ,vL)| = (1 − a1). It is also easy to show from (3.8) that

0 = v0 +
i−1
∑

j=1

gjvj + Aivi + Bi(ei − ei+1) +
L

∑

j=i+2

bjvj ,

wherebj = gj + Bihj−i for i + 2 6 j 6 L − 1, andbL = g∗L + Bih
∗
L−i. An application of Lemma 3.6

completes the proof of (3.12).
We now deduce numerical estimates forVi/T ∗

L. Using Lemma 3.7, plus explicit computation ofgi for
smalli, givesAi > 4 for all i and

gj + Bihj−i > 1.44gj (i large, sayi > L − 100),

gj + Bihj−i > 1.16gj (i > 1, j > i + 2),

g∗L + Bih
∗
L−i > 1.44g∗L (i < L − 2),

g∗L + BL−2h
∗
2 > 1.19g∗L.

From these bounds, plus (3.9) and (3.12), it follows that

VL−2/T ∗
L < (4 · 1.19)−1,

Vi/T ∗
L < (4 · 1.44L−i−1)−1 (L − 99 6 i 6 L − 3),

Vi/T ∗
L < (4 · 1.4499 · 1.16L−i−100)−1 (1 6 i 6 L − 100).

Combining these bounds with (3.11) yields

L−2
∑

i=0

Vi/T ∗
L < O((4/5)L) +

1

4

(

1

1.19
+

1.44−2

1 − 1.44−1
+

1.44−99

(1 − 1/1.16)

)

< 0.61,

which implies (3.10). This completes the proof of Lemma 3.4. ¤

Important in the study ofSL andS ∗
L are both global bounds on the numbersxi (given below) as well as

a determination of where “most” of the volume lies (given below in Lemma 3.10 Section 6).

Lemma 3.8. Letx0 = 1. If x ∈ S ∗
L , thenxi > gj−ixj for 0 6 i 6 j 6 L. If x ∈ SL(ξ) andξi > 1 for all

i, thenxj 6 4.771ξi · · · ξj−1̺
j−ixi for 0 6 i < j 6 L.

Proof. Fix i and note that the first inequality is trivial forj = i. Assumek 6 i−2 and it holds forj > k+1.
Then by (Ik) and the induction hypothesis,

xk >
L−k
∑

h=1

ahxk+h >
i−k
∑

h=1

ahgi−k−hxi = gi−kxi.

By Lemma 3.7, the maximum of̺−i/gi is 4.7709 . . ., occurring ati = 2. The second inequality follows by
Lemma 3.2. ¤
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Careful analysis ofSL reveals that most of the volume occurs withxi ≈ L−i
L ̺i for eachi, with the

“standard deviation” from the mean increasing withi. This observation plays an important role in subsequent
arguments. For now, we restrict our attention to the variablexL, which will be useful in estimating sums
over numbersn, whoseL largest prime factors lie in a specific set, and whose other prime factors are
unconstrained. Results concerning the size ofxi for i < L will not be needed until section 6.

Lemma 3.9. Let L > 3, α > 2ε > 0 and ξi > 1 for eachi. If x ∈ [S ∗
L(ξ) ∩ {xL > α}]+ε, then

y ∈ S ∗
L ∩ {yL > α′}, whereα′ = (α − ε)/(ξ′0 · · · ξ′L−1), ξ′L−1 = 3ξL−1 and for1 6 i 6 L − 2,

yi =
xi

ξ′0 · · · ξ′i−1

, ξ′i = ξi

(

1 +
10̺L−i(1 + a1 + · · · + aL−i)ξ0 · · · ξL−1

α/ε

)

.

Proof. By assumption, for somex′ ∈ S ∗
L(ξ) with x′

L > α, |xi − x′
i| 6 ε for all i. By Lemma 3.8,

xi > x′
i − ε >

x′
i

2
>

̺i−Lx′
L

10ξ1 · · · ξL−1
>

̺i−Lα

10ξ0 · · · ξL−1
(i 6 L − 1).

Hence, by(Ii), if i 6 L − 2 then

L−i
∑

j=1

ajxi+j 6
L−i
∑

j=1

aj(x
′
i+j + ε) 6 ξix

′
i + ε(a1 + · · · + aL−i)

6 ξi(xi + ε(a1 + · · · + aL−i)) 6 ξ′ixi.

Lastly,

xL−1 > x′
L−1 − ε > ξ−1

L−1x
′
L − ε > ξ−1

L−1 max(ε, xL − 2ε) >
xL

3ξL−1
=

xL

ξ′L−1

.

This shows thatx ∈ S ∗
L(ξ′) andxL > α − ε. Finally, by Lemma 3.2,y ∈ S ∗

L andyL > α′. ¤

The next lemma shows thatxL ≈ ̺L/L for most ofSL, significantly smaller than the global upper bound
given by Lemma 3.8.

Lemma 3.10. (i) If α > 0, then

Vol(S ∗
L ∩ {xL 6 α}) ≪ TLαL̺−L

and

Vol(S ∗
L ∩ {xL > α}) ≪ e−αLgLTL.

(ii) If α > 0, ξi > 1 for eachi, H(ξ) 6 2 andε 6 10̺L/L, then

Vol([S ∗
L(ξ) ∩ {xL > α}]+ε) ≪ e−C0αLgLTL

for some absolute constantC0 > 0.

Proof. Consider firstx ∈ S ∗
L ∩ {xL 6 α}. Since(x1, . . . , xL−1) ∈ S ∗

L−1, the volume is6 αT ∗
L−1.

Applying Lemma 3.4 gives the first part of (i). Next, supposex ∈ S ∗
L ∩ {xL > α}. If α > 1/gL, the

volume is zero by Lemma 3.8. Otherwise, setyi = xi − αgL−i for eachi. We haveyL−1 > yL > 0,
vj · y 6 0 for 1 6 j 6 L − 2, andv0 · y 6 1 − αgL. By Lemmas 3.4 and 3.6, the volume of suchy is
6 (1 − αgL)LT ∗

L ≪ (1 − αgL)LTL. The second part of (i) now follows.
For (ii), first supposeα > 2ε. By Lemma 3.9, Corollary 3.3 and part (i),

Vol([S ∗
L(ξ) ∩ {xL > α}]+ε) 6 H(ξ′)Vol(S ∗

L ∩ {yL > α′}) ≪ TLe−α′LgL ,
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whereα′ is defined in Lemma 3.9. SinceH(ξ) 6 2, H(ξ′) ≪ 1 and henceα′ ≫ α. Next, assumeα < 2ε.
Without loss of generality supposeα = 0, sincee−2εLgL ≫ 1 by Lemma 3.7, (3.6) and the assumed upper
bound onε. Forx in question, letr = max{i 6 L : xi > 2ε}. Using Lemma 3.4 and part (i),

Vol([S ∗
L(ξ) ∩ {xL > α}]+ε) ≪

L
∑

r=0

(2ε)L−r Vol (S ∗
r ((ξ0, . . . , ξr−1)))

≪ TL

L
∑

h=0

(2ε)h

(

TL−h

TL

)

≪ TL

L
∑

h=0

(

2εL̺10−L

F ′(̺)

)h

≪ TL. ¤

4 The upper bound for V (x)

In this section, we prove that

(4.1) V (x) ≪ xZ(x)

log x
, Z(x) = exp{C(log3 x − log4 x)2 + D(log3 x) − (D + 1/2 − 2C) log4 x}.

We begin with the basic tools needed for the proof, which show immediately the significance of the set
SL(ξ). First, recall the definition of anS-normal prime (2.1)–(2.2). Also, factor each positive integer

n = q0(n)q1(n) · · · , q0(n) > q1(n) > · · · ,

qi(n) is prime fori < Ω(n) andqi(n) = 1 for i > Ω(n). Define

(4.2) xi(n; x) =
max(0, log2 qi(n))

log2 x
.

Lemma 4.1. Supposey is sufficiently large,k > 2 and

1 > θ1 > · · · > θk >
log2 S

log2 y
,

whereS > exp{(log2 y)36}. Let log2 Ej = θj log2 y for eachj. The number ofS-nice totientsv 6 y with
a pre-image satisfying

qj(n) > Ej (1 6 j 6 k)

is
≪ y(log y)A+B(log2 y)(log S)k log k +

y

(log y)2
,

where

A = −
k

∑

j=1

ajθj , B = 4

√

log2 S

log2 y

k+1
∑

j=2

θ
1/2
j−1j log j.

Proof. Let F = min(E1, y
1/(20 log2 y)), Ek+1 = S, andθk+1 = log2 S/ log2 y. Let m be the part ofv

composed of primes in(S, F ]. Thenm 6 FΩ(v) 6 y1/2. By Lemma 2.4, the number of totients with a
givenm is

≪ y

m

log S

log F
6

y

m
(log y)θk+1−θ1(log2 y).

Let

δj =

√

log2 S log2 Ej−1

log2 y

for eachj. Since the primesqi(n) areS-normal, by (2.2)

Ω(m, Ej , Ej−1) > j(θj−1 − θj − δj) log2 y =: Rj (2 6 j 6 k + 1).
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Therefore, the total number,N , of totients counted satisfies

N ≪ y(log y)θk+1−θ1(log2 y)
k+1
∏

j=2

∑

r>Rj

trj
r!

,

where

tj =
∑

Ej<p6Ej−1

1

p
6 (θj−1 − θj) log2 y + 1 := sj .

If δj 6 1
2(θj−1 − θj), then

sj

Rj
6

1

j

(

1 +
3δj

θj−1 − θj

)

and Lemma 2.1 implies

∑

r>Rj

sr
j

r!
6

(

esj

Rj

)Rj

6 (log y)j(θj−1−θj−δj)(1−log j+3δj/(θj−1−θj))

6 (log y)(j−j log j)(θj−1−θj)+(j log j+2j)δj .

If δj > 1
2(θj−1 − θj), then the sum onr is

6 esj 6 e(log y)(j−j log j)(θj−1−θj)+(2j log j)δj .

Therefore,
N ≪ y(log y)A+B(log2 y)(log S)(k+1) log(k+1)−kek.

¤

Lemma 4.2. Recall definitions(1.3). Supposek > 2, 0 < ω < 1/10 andy is sufficiently large (sayy > y0).
Then the number of totientsv 6 y with a pre-imagen satisfying

a1x1(n; y) + · · · + akxk(n; y) > 1 + ω

is
≪ y(log2 y)6W (y)(log y)−1−ω2/(600k3 log k).

Proof. Assume that

(4.3) ω2 > 3600
log3 y

log2 y
k3 log k,

for otherwise the lemma is trivial. DefineS by

(4.4) log2 S =
ω2

100k3 log k
log2 y,

so thatS > exp{(log2 y)36}. LetU(y) denote the number of totients in question which areS-nice. By (4.4)
and Lemma 2.8, the number of totients not counted byU(y) is

≪ y(log2 y)6W (y)

log y
(log S)−1/6 +

y log2 y

S
≪ y(log2 y)6W (y)(log y)−1−ω2/(600k3 log k).

Let ε = ω/10, α = a1 + · · ·+ ak < k log k, and supposen is a pre-image of a totient counted inU(y). Let
xi = xi(n; y) for 1 6 i 6 k. Then there are numbersθ1, . . . , θk so thatθi 6 xi for eachi, eachθi is an
integral multiple ofε/α, θ1 > · · · > θk, and

(4.5) 1 + ω − ε 6 a1θ1 + · · · + akθk 6 1 + ω.
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For each admissiblek-tupleθ, let T (θ; y) denote the number of totients counted inU(y) which have some
pre-imagen satisfyingxi(n; y) > θi for 1 6 i 6 k. Let j be the largest index withθj > log2 S/ log2 y. By
Lemma 4.1,

T (θ; y) ≪ y(log y)A+B(log2 y)(log S)k log k + y(log y)−2,

where, by (4.5),

A = −
j

∑

i=1

aiθi 6 −(1 + 0.9ω) + α
log2 S

log2 y

and, by (4.4), (4.5) and the Cauchy-Schwartz inequality,

B 6 4





log2 S

log2 y
(1 + ω)

k+1
∑

j=2

j2 log2 j

aj−1





1/2

6 6

(

k3 log k log2 S

log2 y

)1/2

6
3ω

5
.

Also
(log S)2k log k = (log y)ω2/(50k2) 6 (log y)ω/2000.

Using (4.3), the number of vectorsθ is trivially at most

(α

ε

)k
6

(

10k log k

ω

)k

6 (log2 y)k/2 6 (log y)ω2/3000 6 (log y)ω/30000.

Therefore,

U(y) 6
∑

θ

T (θ; y) ≪ y(log y)−1−ω/4,

which finishes the proof. ¤

Before proceeding with the main argument, we prove a crude upper boundfor V (x) to get things started
using the method of Pomerance [29]. For a largex let x′ 6 x be such thatV (x′) = x′W (x)/ log x′.
Let v 6 x′ be a totient with pre-imagen. By Lemma 2.7, the number ofv with p2|n for some prime
p > e

√
log x′

is O(x′/ log x′). By Lemma 4.2, the number ofv with a1x1(n; x′) + a2x2(n; x′) > 1.01 is
O(x′W (x′)(log x′)−1−c) for somec > 0. On the other hand, ifa1x1(n; x′) + a2x2(n; x′) 6 1.01, then
x2(n; x′) 6 0.8. Write v = φ(q0q1)m, so thatm 6 exp{(log x′)0.8}, p2

0 ∤ n andp2
1 ∤ n. Therefore,

W (x) ≪ 1 +
W (x)

(log x′)c
+

∑

q1

∑

m

1

(q1 − 1)m
≪ (log2 x)2W (exp{(log x)0.8}).

Iterating this inequality yields

(4.6) W (x) ≪ exp{9(log3 x)2}.

Lemma 4.3. We have
∑

v∈V

P+(v)6y

1

v
≪ W (ylog2 y) log2 y ≪ exp{10(log3 y)2}.

Proof. Let f(z) denote the number of totientsv 6 z with P+(v) 6 y, and sety′ = ylog2 y. First suppose
z > y′. If v > z1/2, thenP+(v) < v2/ log2 y, so Lemma 2.3 givesf(z) ≪ z/ log2 z. For z < y′,
use the trivial boundf(z) 6 V (z). The lemma follows fromlog2 y′ = log2 y + log3 y, (4.6) and partial
summation. ¤
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Proof of (4.1). Let L = L0(x) and for0 6 i 6 L − 1, let

(4.7) ωi =
1

10000
exp

{

−L − i

40

}

, ξi = 1 + ωi.

ThenH(ξ) 6 1.1. Let v be a generic totient6 x with a pre-imagen satisfyingn > x/ log x andΩ(n) 6
10 log2 x, and setxi = xi(n; x) andqi = qi(n) for i > 0. By Lemma 2.2,

V (x) 6
L−2
∑

j=0

Mj(x) + N(x) + O

(

x

log x

)

,

whereMj(x) denotes the number of such totients6 x with a pre-image satisfying inequality (Ii) for i <
j but not satisfying inequality (Ij), andN(x) denotes the number of such totients with every pre-image
satisfyingx ∈ SL(ξ). By Lemma 4.2 (withω = ω0) and (4.6),M0(x) ≪ x/ log x. Now suppose1 6 j 6
L−2, and setk = L− j. Letn be a pre-image of a totient counted inMj(x), and setw = qjqj+1 · · · , m =

φ(w). Since (I0) holds,x2 6 ξ0/(a1 + a2) < 0.9. It follows thatq0 > x1/3, whencem < x2/3. By the
definition ofMj(x) and (4.7),

xj 6 ξ−1
j (a1xj+1 + a2xj+2 + · · · ) < ξ−1

j−1(a1xj + a2xj+1 + · · · ) 6 xj−1,

whenceqj−1 > qj andφ(n) = φ(q0 · · · qj−1)m. For eachm, the number of choices forq0, . . . , qj−1 is

≪ x

m log x
Rj−1(Sj−1(ξ0, . . . , ξj−3); x),

where we setS0 = {0}, S1 = [0, 1] andS2 = [0, 1]2. Let f(y) be the number ofm 6 y. DefineYj by
log3 Yj = k/20 + 1000. Sincem is a totient, we havef(y) 6 V (y), but wheny > Yj we can do much
better. First note thatw ≪ y log2 y. By Lemma 2.3, the number of suchw with P+(w) < y1/ log2 y is
O(y/(log y)3). Otherwise, we haveqj = P+(w) > y1/ log2 y and

xj >
log2 y − log3 y

log2 x
>

log2 y

log2 x

(

1 − k/20 + 1000

ek/20+1000

)

.

For0 6 i 6 k, let

zi = xi(w; y) =
log2 x

log2 y
xi+j .

Since (Ij) fails andy > Yj , it follows that

a1z1 + · · · + akzk >
log2 x

log2 y
(1 + ωj)xj > (1 + ωj/2).

By Lemma 4.2 and (4.6), wheny > max(y0, Yj) we have

f(y) ≪ yW (y)(log2 y)6

log y
exp

{

−
ω2

j

600k3 log k
log2 y

}

≪ y

log y(log2 y)2
.

By partial summation and Lemma 4.3,

∑

m

1

m
≪ 1 +

∑

m6Yj

1

m
≪ W (Yj) log2 Yj ≪ exp{k2/40 + O(k)}.
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Therefore, by Lemma 3.1, Corollary 3.5 (withΨ = k + 1) and Lemma 3.10 (ii) withα = 0,

Mj(x) ≪ x

log x
Rj−1(Sj−1(ξ0, . . . , ξj−1); x) exp{k2/40}

≪ x

log x
Tj−1(log2 x)j−1 exp{k2/40}

≪ x

log x
exp{−k2/4 − ((D + 1)/2C − 1)k}Z(x).

(4.8)

Thus

(4.9)
L−1
∑

j=0

Mj(x) ≪ x

log x
Z(x).

Next, supposen is a pre-image of a totient counted inN(x). By Lemma 3.8,xL 6 5̺L 6 20 log3 x
log2 x . If b is

a nonnegative integer, letNb(x) be the number of totients counted inN(x) with a pre-imagen > x/ log2 x
satisfyingb/ log2 x 6 xL 6 (b + 1)/ log2 x. Let w = qL+1 · · · andq = q1 · · · qLw. Sincex2 < 0.9 we
haveq < x2/3. As φ(q) > φ(q1 · · · qL)φ(w), for a fixedq the number of possibilities forq0 is

≪ x

log x

1

φ(q)
6

x

log x

1

φ(q1 · · · qL)v
, v = φ(w).

By Lemma 3.1 and Lemma 3.10 (ii),
∑ 1

φ(q1 · · · qL)
≪ RL(SL(ξ) ∩ {xL > b/ log2 x}; x) ≪ Z(x)e−C0b/4.

By Lemma 4.3 and (4.6),
∑ 1

v ≪ exp{10 log2 b}. Combining these estimates gives

(4.10) Nb(x) ≪ x

log x
Z(x) exp{−C0b/4 + 10 log2 b}.

Summing onb givesN(x) ≪ x
log xZ(x), which together with (4.9) gives (4.1). ¤

5 The lower bound for Vκ(x)

Our lower bound forVκ(x) is obtained by constructing a set of numbers with multiplicative structure
similar to the numbers counted byN(x) in the upper bound argument. At the core is the following estimate,
which is proved using the lower bound method from [26].

Lemma 5.1. Let y be large,k > 1, ee 6 S 6 vk < uk−1 < vk−1 < uk−2 < · · · < u0 < v0 = y, v1 6
y1/10 log2 y, l > 0, 1 6 r 6 y1/10, δ =

√

log2 S/ log2 y. Setνj = log2 vj/ log2 y andµj = log2 uj/ log2 y

for eachj. Suppose also thatνj−1 − νj > 2δ for 2 6 j 6 k, 1 6 d 6 y1/100 andP+(d) 6 vk. The number
of solutions of

(5.1) (p0 − 1) · · · (pk−1 − 1)f1 · · · fld = (q0 − 1) · · · (qk−1 − 1)e 6 y/r,

in p0, . . . , pk−1, f1, . . . , fl, q0, . . . , qk−1, e satisfying

(1) pi andqi areS-normal primes, neitherpi − 1 nor qi − 1 is divisible byr2 for a primer > vk;
(2) pi 6= qi andui 6 P+(pi − 1), P+(qi − 1) 6 vi for 0 6 i 6 k − 1;
(3) P+(ef1 · · · fl) 6 vk; Ω(fi) 6 10 log2 vk for all i;
(4) p0 − 1 has a divisor> y1/2 which is composed of primes> v1;

is
≪ y

dr
(c4 log2 y)6k(k + 1)Ω(d)(log vk)

20(k+l) log(k+l)+1(log y)−2+
Pk−1

i=1
aiνi+E ,

wherec4 is a positive constant andE = δ
∑k

i=2(i log i + i) + 2
∑k−1

i=1 (νi − µi).



22 KEVIN FORD

Proof. We consider separately the prime factors of each shifted prime lying in each interval(vi, vi+1]. For
0 6 j 6 k − 1 and0 6 i 6 k, let

si,j(n) =
∏

pa‖(pj−1)
p6vi

pa, s′i,j(n) =
∏

pa‖(qj−1)
p6vi

pa, si = df1 · · · fl

k−1
∏

j=0

si,j = e
k−1
∏

j=0

s′i,j .

Also, for 0 6 j 6 k − 1 and1 6 i 6 k, let

ti,j =
si−1,j

si,j
, t′i,j =

s′i−1,j

s′i,j
, ti =

k−1
∏

j=0

ti,j =
k−1
∏

j=0

t′i,j .

For each solutionA = (p0, . . . , pk−1, f1, . . . , fl, q0, . . . , qk−1, e) of (5.1), let

σi(A ) = {si; si,0, . . . , si,k−1, f1, . . . , fl; s
′
i,0, . . . , s

′
i,k−1, e},

τi(A ) = {ti; ti,0, . . . , ti,k−1, 1, . . . , 1; t′i,0, . . . , t
′
i,k−1, 1}.

Defining multiplication of(2k + l + 2)-tuples by component-wise multiplication, we have

(5.2) σi−1(A ) = σi(A )τi(A ).

Let Si denote the set ofσi(A ) arising from solutionsA of (5.36) andTi the corresponding set ofτi(A ).
By (5.2), the number of solutions of (5.1) satisfying the required conditionsis

(5.3) |S0| =
∑

σ∈S1

∑

τ∈T1

στ∈S0

1.

We will apply an iterative procedure based on the identity

(5.4)
∑

σi−1∈Si−1

1

si−1
=

∑

σi∈Si

1

si

∑

τi∈Ti
σiτi∈Si−1

1

ti
.

First, fix σ1 ∈ S1. By assumption (4) in the lemma,t1,0 > y1/2. Also, t1 = t1,0 = t′1,0 6 y/(rs1), t1 is
composed of primes> v1, and alsos1,0t1 + 1 ands′1,0t1 + 1 are different primes. Writet1 = t′1Q, where

Q = P+(t1). Sincep0 − 1 is anS-normal prime,Q > t
1/Ω(t1)
1 > y1/6 log2 y by (2.3). Givent′1, Lemma 2.5

implies that the number ofQ is O(y(log2 y)6/(rs1t
′
1 log3 y)). Using Lemma 2.4 to bound the sum of1/t′1,

we have for eachσ1 ∈ S1,

(5.5)
∑

τ1∈T1

σ1τ1∈S0

1 ≪ y(log2 y)6

rs1(log y)2+ν1
.

Next, suppose2 6 i 6 k, σi ∈ Si, τi ∈ Ti andσiτi ∈ Si−1. By assumption (2),

ti = ti,0 · · · ti,i−1 = t′i,0 · · · t′i,i−1.

In addition,si,i−1ti,i−1 + 1 = pi−1 ands′i,i−1t
′
i,i−1 + 1 = qi−1 are different primes. LetQ1 = P+(ti,i−1),

Q2 = P+(t′i,i−1), b = ti,i−1/Q1 andb′ = t′i,i−1/Q2.
We consider separatelyTi,1, the set ofτi with Q1 = Q2 andTi,2, the set ofτi with Q1 6= Q2. First,

Σ1 :=
∑

τi∈Ti,1

σiτi∈Si−1

1

ti
6

∑

t

h(t)

t
max
b,b′

∑

Q1

1

Q1
,
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whereh(t) denotes the number of solutions ofti,0 · · · ti,i−2b = t = t′i,0 · · · t′i,i−2b
′, and in the sum on

Q1, si,i−1bQ1 + 1 and s′i,i−1b
′Q1 + 1 are unequal primes. By Lemma 2.5, the number ofQ1 6 z is

≪ z(log z)−3(log2 y)3 uniformly in b, b′. By partial summation,
∑

Q1>ui−1

1

Q1
≪ (log2 y)3(log y)−2µi−1 .

Also, h(t) is at most the number of dual factorizations oft into i factors each, i.e.h(t) 6 i2Ω(t). By (2.2),
Ω(t) 6 i(νi−1 − νi + δ) log2 y =: I. Also, by assumption (1),t is squarefree. Thus

∑

t

h(t)

t
6

∑

j6I

i2jHj

j!
,

where
∑

vi<p6vi−1

1

p
6 (νi−1 − νi) log2 y + 1 =: H.

By assumption,νi−1 − νi > 2δ, henceI 6 3
2 iH 6 3

4 i2H. Applying Lemma 2.1 (withα 6 3
4 ) yields

(5.6)
∑

t

h(t)

t
6

(

eHi2

I

)I

6 (ei)I = (log y)(i+i log i)(νi−1−νi+δ).

This gives
Σ1 ≪ (log2 y)3(log y)−2µi−1+(i+i log i)(νi−1−νi+δ).

For the sum overTi,2, setti = tQ1Q2. Note that

tQ2 = ti,0 · · · ti,i−2b, tQ1 = t′i,0 · · · t′i,i−2b
′,

soQ1|t′i,0 · · · t′i,i−2b
′ andQ2|ti,0 · · · ti,i−2b. If we fix the factors divisible byQ1 and byQ2, then the number

of possible ways to formt is 6 i2Ω(t) as before. Then

Σ2 :=
∑

τi∈Ti,2

σiτi∈Si−1

1

ti
6

∑

t

i2Ω(t)+2

t
max
b,b′

∑

Q1,Q2

1

Q1Q2
,

wheresi,i−1bQ1 + 1 and s′i,i−1b
′Q2 + 1 are unequal primes. By Lemma 2.5, the number ofQ1 6 z

(respectivelyQ2 6 z) is≪ z(log z)−2(log2 y)2. By partial summation, we have
∑

Q1,Q2

1

Q1Q2
=

∑

Q1

1

Q1

∑

Q2

1

Q2
≪ (log2 y)4(log y)−2µi−1 .

Combined with (5.6) this gives

Σ2 ≪ i2(log2 y)4(log y)−2µi−1+(i+i log i)(νi−1−νi+δ).

By assumption,i2 6 k2 6 (log2 y)2. AddingΣ1 andΣ2 shows that for eachσi,

(5.7)
∑

τi∈Ti
σiτi∈Si−1

1

ti
≪ (log2 y)6(log y)−2µi−1+(i log i+i)(νi−1−νi+δ).

Using (5.3) and (5.4) together with the inequalities (5.5) and (5.7), the numberof solutions of (5.1) is

≪ y

r
(c4 log2 y)6k(log y)−2−ν1+

Pk
i=2

(νi−1−νi+δ)(i log i+i)−2µi−1

∑

σk∈Sk

1

sk
,

wherec4 is some positive constant. Note that the exponent of(log y) is 6 −2 +
∑k−1

i=1 aiνi + E.
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It remains to treat the sum onσk. Givens′k = sk/d, the number of possibleσk is at most the number of
factorizations ofs′k into k + l factors times the number of factorizations ofds′k into k + 1 factors, which is
at most(k + 1)Ω(ds′k)(k + l)Ω(s′k). By assumptions (1) and (3),Ω(s′k) 6 10(k + l) log2 vk. Thus,

∑

σk∈Sk

1

sk
6

(k + 1)Ω(d)(k + l)20(k+l) log2 vk

d

∑

P+(s′k)6vk

1

s′k
≪ (k + 1)Ω(d)(log vk)

20(k+l) log(k+l)+1

d
. ¤

Lemma 5.2. If ξi = 1 − ωi, ωi = 1
10(L0−i)3

for eachi 6 L − 2, then there is an absolute constantM1 so

that whenever1 6 A 6 (log y)1/2, M = [M1 + 2C log A] andL 6 L0(y) − M , we have

(5.8) RL(S ; y) ≫ (log2 y)LTL,

whereS is the subset ofSL(ξ) with the additional restrictions

(5.9) xi+1 6 (1 − ωi)xi (i > 1), xL >
A

log2 y
.

Proof. By Lemma 3.1,RL(S ; y) ≫ (log2 y)L Vol(S −ε). For1 6 i 6 L − 1, put

ω′
i =

6(2 + (L − i) log(L − i))̺L−i

100 + A
, ξ′i = 1 − ωi − ω′

i.

Let T be the subset ofSL(ξ′) with the additional restrictionsxi+1 6 ξ′ixi for eachi andxL > (200 +
A)/ log2 y. Supposex ∈ T and|x′

i − xi| 6 ε for eachi. By Lemma 3.8,

x′
i >

xi

2
>

̺L−i

6
xL >

̺L−i(A + 200)

6 log2 y
.

Thus, for0 6 i 6 L − 1,

x′
i+1 6 xi+1 + ε 6 ξ′i(x

′
i + ε) + ε 6

(

ξ′i +
2ε

x′
i

)

x′
i 6 ξix

′
i

and

a1x
′
i+1 + · · · + aL−ix

′
L 6 ξ′ixi + ε(a1 + · · · aL−i)

6 ξ′i(x
′
i + ε) + ε(1 + (L − i) log(L − i)) 6 ξix

′
i.

Therefore,x′ ∈ S and henceT ⊆ S −ε. Make the substitutionxi = (ξ′0 · · · ξ′i−1)yi for 1 6 i 6 L. By
Lemma 3.2,y ∈ T ′ := SL ∩ {yL > (A + 200)/ log2 y}. By Lemma 3.10 (i), ifM1 is large enough then

Vol(S −ε) > Vol(T ) > H(ξ′)Vol(T ′) > H(ξ′)
[

TL − O(A̺MTL)
]

≫ TL. ¤

Now we proceed to the lower bound argument for Theorems 1 and 2. SupposeA(d) = κ andφ(di) =
d (1 6 i 6 κ). Assume throughout thatx > x0(d). The variablek is reserved as an index for certain
variables below. Define

M = M2 + [(log d)1/9], M2 is a sufficiently large absolute constant(5.10)

L = L0(x) − M,(5.11)

ξi = 1 − ωi, ωi =
1

10(L0 − i)3
(0 6 i 6 L − 2).(5.12)
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Let B denote the set of integersn = p0p1 · · · pL > x9/10 with eachpi prime and

φ(n) 6 x/d,(5.13)

(x1(n; x/d), · · · , xL(n; x/d)) ∈ SL(ξ),(5.14)

log2 pi > (1 + ωi) log2 pi+1 (0 6 i 6 L − 1),(5.15)

pL > max(d + 2, 17).(5.16)

By Corollary 3.5 and Lemma 5.2 (withy = x/d, A = log2 max(d + 2, 17)),

(5.17) |B| ≫ x

d log(x/d)
(log2(x/d))LTL ≫ x

d log x
(log2 x)LTL.

Consider the equation

(5.18) dφ(n) = φ(n1),

wheren ∈ B. Let q0 > q1 > · · · be the prime factors ofn1, and for j > Ω(n1), put qj = 1. If
n|n1, then none of the primesqi (0 6 i 6 L) occur to a power greater than 1, for otherwise (5.16) gives
φ(n1) > φ(n)pL > φ(n)d. Also,P+(di) < pL for all i. Thereforeφ(n1) = φ(n1/n)φ(n) = φ(n)d, which
impliesn1 = ndi for somei. These we will call the trivial solutions to (5.18). We then haveA(dφ(n)) = κ
for eachn ∈ B for which (5.18) has no non-trivial solutions, i.e. solutions withn ∤ n1. In particular, for
suchn we haveφ(n′) 6= φ(n) for n′ 6= n andn′ ∈ B.

The numbersn which give rise to non-trivial solutions are grouped as follows. For0 6 j 6 L, let Bj be
the set ofn ∈ B such that (5.18) holds for somen1 with qi = pi (0 6 i 6 j − 1) andpj 6= qj , and such that
(5.18) does not hold for anyn1 with n ∤ n1 andqi = pi (0 6 i 6 j). We then have

(5.19) Vκ(x) > |B| −
L

∑

j=0

|Bj |.

For n ∈ Bj with j > 1, write n = p0n2n3, wheren2 = p1 · · · pj−1 and n3 = pj · · · pL. When
j = 0, setn3 = n. If qj−1 = qj , thenpj−1|dφ(n3), which is impossible. Thereforeqj−1 > qj and
φ(n1) = φ(p0 · · · pj−1)φ(qj · · · ) and

(5.20) dφ(n3) = φ(n4)

has a nontrivial solutionn4 (that is, withn3 ∤ n4). In addition, all such solutions satisfyP+(n4) 6= P+(n3).
Fix j and letAj be the set of suchn3. It will be useful to associate a particularn4 to eachn3 ∈ Aj as follows.
Let v = φ(n3) for somen3 ∈ Aj . If there is only one suchn3, then taken4 to be the smallest nontrivial
solution of (5.20). Otherwise, suppose there are exactlyk > 2 members ofAj , n3,i with φ(n3,i) = v
(1 6 i 6 k). Take a permutationσ of {1, . . . , k} with no fixed point and associaten4 = d1n3,σ(i) with n3,i.
Sincei 6= σ(i), n3,i ∤ n4, so the associatedn4 is a nontrivial solution of (5.20). In addition, distinctn3 ∈ Aj

are associated with distinctn4.
For x large, (5.14) and (5.15) implyp0 > x3/4. By the prime number theorem, for each fixedn2n3, the

number of choices forp0 is O(x/(dφ(n2n3) log x)). Hence

|Bj | ≪
x

d log x

∑

n2

1

φ(n2)

∑

n3

1

φ(n3)
(1 6 j 6 L).

Sincen2 ∈ Rj−1(Sj−1; x) whenj > 2, Lemma 5.2 gives

∑

n2

1

φ(n2)
≪ (log2 x)j−1Tj−1 (1 6 j 6 L).
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To attack the sum onn3, let Bj(y) denote the number of possiblen3 with φ(n3) 6 y. In particular,
|B0| = B0(x/d). Whenj > 1, by partial summation,

(5.21) |Bj | ≪
x(log2 x)j−1Tj−1

d log x





∑

log3 φ(n3)6M/10

1

φ(n3)
+

∑

log3 y>M/10

Bj(y)

y2



 .

If M2 is large enough, then

(5.22)
∑

log3 φ(n3)6M/10

1

φ(n3)
6

(

∑

log2 p6eM/10+1

1

p − 1

)L−j+1

6 e(L−j+1)M/9.

We will show below that

(5.23) Bj(y) ≪ y

log y(log2 y)2
(log3 y > M/10, 0 6 j 6 L).

In particular,|B0| = B0(x/d) ≪ x/(d log x). Combining (5.23) with (5.10), (5.21), Corollary 3.5 and
(5.22), we obtain forj > 1,

|Bj | ≪
x

d log x
(log2 x)j−1Tj−1 exp{(L − j + 1)M/9}

≪ x

d log x
(log2 x)LTL exp{(L − j + 1)(M/9 − M/2C − (L − j + 1)/4C)}.

Summing overj and using Corollary 3.5, (4.1), (5.17) and (5.19) gives

Vκ(x) >
|B|
2

≫ε d−1−εV (x).

This completes the proof of Theorem 2. The lower bound in Theorem 1 follows by takingd = 1, κ = 2.
We now prove (5.23). Forj 6 L − 2, pj 6 y, hence by (5.14),

(5.24)

(

log2 pj+1

log2 y
, · · · ,

log2 pL

log2 y

)

∈ SL−j((ξj , . . . , ξL−1)).

Thus, by Lemma 3.8 and (5.16) (and trivially whenj > L − 1),

1 6 log2 pL 6 3̺L−j log2 y,

which implies

(5.25) h := ω(n3) = L − j + 1 6 2C log3 y + 3.

Next define

(5.26) S = exp exp{(log3 y)10}.
We remove from consideration thosen3 satisfying (i) n3 6 y/ log2 y, (ii) p2|φ(n3) for some prime

p > log2 y, (iii) there is somem|n3 with m > exp((log2 y)2) andP+(m) < m1/ log2 y; (iv) n3 is divisible
by a prime which is notS-normal. If p2|φ(n3), then eitherp2|n3 or n3 is divisible by two primes≡ 1
(mod p). Thus, the number ofn3 satisfying (ii) is

6
∑

p>log2 y





y

p2
+ y





∑

q<y,q≡1 (mod p)

1

q





2

 ≪
∑

p>log2 y

y(log2 y)2

p2
≪ y(log2 y)2

log2 y

by the Brun-Titchmarsh inequality and partial summation. By Lemma 2.3, the numberof n3 satisfying (iii)
is O(y/ log2 y). By the Hardy-Ramanujan inequality [22], the number of integers6 t which haveh − 1
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prime factors isO(t(log2 t + O(1))h−2/((h − 2)! log t)) uniformly for h > 2. Thus, the number ofn3

satisfying (iv) is

≪
∑

p6y
p notS−normal

y exp(2(log3 y)2)

p log(2y/p)
≪ y

(log y)(log2 y)2

by Lemma 2.6 and partial summation (ifj = L, thenh = 1 and we use Lemma 2.6 directly).
For the remainingn3, sincelog3 y > M/10, by (5.10) we have

(5.27) log d 6 (10 log3 y)9.

Let n4 be the unique number associated withn3. As φ(n4) 6 dy, we haven4 ≪ y(log y)1/3. Now remove
from consideration thosen3 with (v) p2|n4 or p2|φ(n4) for some primep > log2 y. The number of suchn3

is O(y/ log3/2 y). Also remove from consideration thosen3 such that (vi)n4 is divisible by a prime which
is notS-normal. By the way we chosen4, the only way this is possible is ifd1 has a prime factor which is
not S-normal, or ifφ(n3) 6= φ(n′

3) for n′
3 ∈ Aj , n′

3 6= n3. The first case is not possible, since by (5.27),
d1 ≪ d log2 d ≪ log S, hence forp|d1, Ω(p− 1) 6 2 log p 6 2 log d1 6 log2 S +O(1). Forn3 in the latter
category, the numbersφ(n4) are distinct totients. Hence, by Lemma 2.8 and (4.1), the number of suchn3 is

≪ y(log2 y)6W (y)

log y
(log S)−1/6 ≪ y

log y(log2 y)2
.

Let B∗
j (y) denote the number of remainingn3 (those not satisfying any of conditions (i)–(vi) above), so that

(5.28) Bj(y) ≪ y

log y(log2 y)2
+ B∗

j (y).

If j 6 L − 1, thenpj+1 · · · pL 6 ph
j+1, so by (5.10), (5.15), (5.25), andM 6 10 log3 y,

log2(n3/pj) 6
log2 pj

1 + 1
10(h + M − 1)−3

+ log h 6 log2 y − 2 log3 y 6 log2 y − 10.

In particular, sincen3 > y/ log2 y, this shows that

(5.29) pj > y9/10, pj+1 < y1/(100 log2 y).

Whenj = L, the first inequality in (5.29) holds sincen3 > y/ log2 y, and the second inequality is vacuous.
Note thatp is S−normal for allp|n3n4, and hence by (2.2),

(5.30) P+(p − 1) > (p − 1)1/Ω(p−1) > p1/(4 log2 y).

We now group then3 counted inB∗
j (y) according to the sizes ofP+(pi − 1). Let J be the largest index

with log2 P+(pJ − 1) > (log2 y)2/3. By (5.29),J > j. Setε = 1/ log2 y. For eachn3, there are numbers

ζj+1, . . . , ζJ , each an integral multiple ofε, and withζi − ε 6 log2 P+(pi−1)
log2 y 6 ζi for eachi. Also setζj = 1

and

(5.31) ζJ+1 = min

(

ζJ

1 + ωJ
+

log3 y + log 4

log2 y
, (log2 y)−1/3

)

.

By (5.30),

(5.32) log2 P+(pi − 1) 6 ζJ+1 (i > J).

By (5.14) and (5.25),

(5.33)
J−j
∑

i=1

aiζj+i 6 1 − ωj + h2ε 6 1 − ωj/2.
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Let δ =
√

log2 S/ log2 y. We claim that

(5.34)

∣

∣

∣

∣

log2 P+(pi − 1) − log2 P+(qi − 1)

log2 y

∣

∣

∣

∣

6 (2(i − j) + 1)δ (j 6 i 6 J).

To see this, fixi, let k = i − j and

α =
log2 P+(pi − 1)

log2 y
, β =

log2 P+(qi − 1)

log2 y
.

By (2.2), if β > α + (2k + 1)δ, then

(k + 1)(β − α − δ) 6
Ω(φ(n3), P

+(pi − 1), P+(qi − 1)

log2 y
6 k(β − α + δ),

a contradiction. Assumingβ < α − (2k + 1)δ likewise leads to a contradiction. This establishes (5.34). In
particular, (5.34) implies thatqj+1, . . . , qJ exist.

By (5.15), (5.25), (5.30) andlog3 y > M/10, for j 6 i 6 J ,

ζi >
log2 pi − log3 y − log 4

log2 y
> (1 + ωi)(ζi+1 − ε) − log3 y + log 4

log2 y

> ζi+1 +
(log2 y)−1/3

10(M + h)3
− 2ε log3 y > ζi+1 + (log2 y)−0.35.

(5.35)

We make a further subdivision of the numbersn3, counting separately those with(pj · · · pJ , qj · · · qJ) =
m. Let Bj(ζ; m; y) be the number ofn3 counted byB∗

j (y) satisfying

y9/10 6 pj 6 y, ζi − ε 6
log2 P+(pi − 1)

log2 y
< ζi (j + 1 6 i 6 J).

Fix m, ζ and supposen3 is counted inBj(ζ; m; y). Let pj · · · pJ/m = pj0 · · · pjk−1
, where

j = j0 < j1 < · · · < jk−1 6 J.

Let ν0 = 1, for 1 6 i 6 k − 1 let νi = ζji + (2L + 1)δ, and for0 6 i 6 k − 1 let µi = νi − (4L + 2)δ − ε.
Also, putνk = ζJ+1 + (2L + 3)δ. For brevity, for0 6 i 6 k − 1 setui = exp[(log y)µi ] and for0 6 i 6 k
setvi = exp[(log y)νi ]. By (5.32),P+(pi − 1) 6 vk for i > J . We also claim thatP+(qi − 1) 6 vk for
i < J . If not, then by theS−normality of the primespi andqi,

(J − j + 2)(νk − ζJ+1 + δ log2 y) 6 Ω(φ(n3), exp[(log y)ζJ+1)], vk) 6 (J − j + 1)(νk − ζJ+1 + δ log2 y),

a contradiction. Hence,Bj(ζ; m; y) is at most the number of solutions of

(5.36) (pj0 − 1) · · · (pjk−1
− 1)(pJ+1 − 1) · · · (pL − 1)d = (qj0 − 1) · · · (qjk−1

− 1)e 6 y/φ(m),

whereP+((pJ+1 − 1) · · · (pL − 1)e) 6 vk, andpji andqji areS-normal primes satisfying

(5.37) ui 6 P+(pji − 1), P+(qji − 1) 6 vi (0 6 i 6 k − 1).

By (5.29),φ(m) 6 y1/10. Also, pj − 1 cannot be divisible by a factorb > y1/3 with P+(b) < y1/9 log2 y.
Further, (5.35) and the definition ofνk imply thatνi−1 − νi > 2δ for 2 6 i 6 k. By Lemma 5.1,

Bj(ζ; m; y) ≪ y

dφ(m)
(c4 log2 y)6L+6(L + 2)Ω(d)(log vk)

20(L+1)2(log y)−2+
Pk−1

i=1
aiζji

+E ,

whereE ≪ δL2 log L. By (5.33), the exponent oflog y is at most−1 − ωj/2 + E. By (5.27),Ω(d) ≪
log d ≪ (log3 y)9, hence

Bj(ζ; m; y) ≪ y

dφ(m)
(log y)−1−ωj/2 exp{O((log2 y)2/3(log3 y)2)}.
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Also,
∑

m

1

φ(m)
6 (log2 y + O(1))L−j ≪ exp{O((log3 y)2)}.

The number of possibilities forζ is at mostε−L 6 exp{2(log3 y)2}. Summing over all possiblem andζ,
and applyinglog3 y > M/10, we have

B∗
j (y) =

∑

ζ,m

Bj(ζ; m; y) ≪ y

log y
(log y)−ωj/2+(log2 y)−1/4

≪ y

log y
exp

{ − log2 y

20(2C log3 y + M + 3)3
+ (log2 y)3/4

}

≪ y

log y
exp{−(log2 y)9/10}.

Combining this with (5.28) completes the proof of (5.23).

6 The normal multiplicative structure of totients
The proofs of Theorems 1 and 2 suggest that for most totientsm 6 x, all the pre-imagesn of m satisfy

(x1, x2, . . . , xL) ∈ SL(ξ) with L nearL0 andξ defined as in section 4. We prove such a result below in
Theorem 16, which is an easy consequence of Theorem 1 and the machinery created for its proof. From this,
we deduce the normal size of the numbersqi(n) and establish Theorems 10 and 11. Using these bounds, we
deduce the normal order ofΩ(m) (Theorem 12 and Corollary 13).

Theorem 16. Suppose0 6 Ψ < L0(x), L = L0 − Ψ and let

(6.1) ξi = ξi(x) = 1 +
1

10000
e−(L0−i)/40 (0 6 i 6 L − 1).

The number of totientsm 6 x with a pre-imagen satisfying

(6.2) (x1(n; x), . . . , xL(n; x)) 6∈ SL(ξ) or xL(n; x) 6
2

log2 x

is≪ V (x) exp{−Ψ2/4}.

Proof. As in Section 4, defineMj(x) to be the number of totientsm 6 x with a pre-image satisfying (Ii)
for i < j, but not satisfying(Ij), wherex = (x1(n; x), . . . , xL(n; x)). By Theorem 1, Corollary 3.5, and
(4.8), the number of totientsm 6 x with a pre-imagen satisfyingx 6∈ SL(ξ) is at most

∑

j6L−1

Mj(x) ≪ x

log x
Z(x)e−Ψ2/4 ≪ V (x)e−Ψ2/4.

Now suppose thatx ∈ SL(ξ) andxL 6 2/ log2 x. ThenqL(n) 6 ee2

. We can assume thatx/ log x 6
n 6 2x log2 x and thatn is S-nice, whereS = exp{(log2 x)100}, the number of exceptions being≪
V (x)/ log2 x. By Lemma 2.2, we can also assume thatΩ(n) 6 10 log2 x. Putpi := qi(n). Lemma 3.8
givesx3 < 5̺3 < 0.9, and sop2 6 exp((log x)0.9). Thus,

n/(p0p1p2) = p3p4 · · · 6 exp(10(log2 x)(log x)0.9) ≪ x1/100

and sop0 > x1/4 for largex. In particular,p2
0 ∤ n.

Suppose now thatn has exactlyL0 − k + 1 prime factors> ee2

, where we fixk > Ψ. Then

v = (p0 − 1)φ(p1p2 · · · pL0−k)w
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for some integerw satisfyingP+(w) 6 ee2

. Using the prime number theorem to estimate the number of
choices forp0 givenp1 · · · pL0−k andw, we obtain that the number ofv of this form is

≪ x

log x

∑

p1,...,pL0−k

1

φ(p1 · · · pL0−k)

∑

w

1

w
≪ x

log x
RL0−k(ξk; x),

sincep1 · · · pL0−k ∈ RL0−k(ξk; x), whereξk := (ξ0, . . . , ξL0−k−1). By Lemma 3.1, Corollary 3.5, and
Lemma 3.10 (ii),

RL0−k(ξk; x) ≪ (log2 x)L0−kTL0−k ≪ Z(x) exp(−k2/4C),

hence the number of totients is

≪ x

log x
Z(x) exp(−k2/4C) ≪ V (x) exp(−k2/4C).

Summing overk > Ψ gives the required bound. ¤

We show below that for most ofSL, xj ≈ ̺j(1 − j/L) for 1 6 j 6 L. Let T ∗
L(R) = Vol (S ∗

L : R),
recall definition (3.3) and Lemma 3.7. Define

(6.3) λi = ̺igi (i > 0), λ = lim
i→∞

λi =
1

̺F ′(̺)
<

1

3
.

By Lemma 3.7 and explicit calculation ofgi for smalli, we have for largeL

(6.4)
1

5
6 λi 6

1

3
, ,

gigL−i

gL
6

1

3
,

gig
∗
L−i

g∗L
6

1

3
.

Lemma 6.1. Supposei 6 L − 2, β > 0, α > 0 and defineθ by

(6.5) β =
̺i(1 − i/L)

1 + θ
.

If θ > 0, then

(6.6) T ∗
L(xi 6 β, xL > α) ≪ TL

i

θL

(1 + θL/i)i

(1 + θ)L
e−LαgL .

For −λi 6 θ 6 0,

(6.7) T ∗
L(xi > β, xL > α) ≪ TLe−

2

3
LαgL exp

{

Ki +
λi

1 − λi
Lθ + L(θ − log(1 + θ))

}

,

whereK = λ
1−λ + log(1 − λ) = 0.0873 . . .. If −iλi/L < θ < 0, then

(6.8) T ∗
L(xi > β, xL > α) ≪ TLe−

2

3
LαgL

i

|θ|L exp

{

−L(L − i)

2i
θ2

}

.

Proof. For each inequality, we show that the region in question lies inside a simplex forwhich we may apply
Lemma 3.6. The volume is then related toTL via Lemma 3.4. By Lemma 3.8,xL 6 1/gL. Hence, we may
assumerα > 1/gL, else the volumes are all zero. Also by Lemma 3.8,xi > αgL−i, so we may assume that
β > αgL−i in showing (6.6). Also, ifβ 6 αgL−i, thenT ∗

L(xi > β, xL > α) = TL(xL > α) (i.e., doesn’t
depend onβ), while the right sides of (6.7) and (6.8) are each increasing inθ. Thus, for (6.7) and (6.8), we
may assume also thatβ > αgL−i as well.

All three inequalities are proved by a common method. Considerx ∈ SL with xL > α and letyj =
xj − αgL−j for eachj. Thenvj · y = vj · x 6 0 (1 6 j 6 L) andv0 · y 6 1− αgL. Let ξ = 1− αgL and
β′ = β − αgL−i. Setzj = yj − β′gi−j for j 6 i andzj = yj for j > i. By (3.3),

vj · z 6 0 (1 6 j 6 L, j 6= i),

vi · z 6 β′,

v0 · z 6 ξ − β′gi.

(6.9)
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With these definitions,xi ⋚ β ⇐⇒ zi ⋚ 0. Hence, for anyA > −gi, we have

v′
0 · z 6 ξ + Aβ′, v′

0 = (v0 + (gi + A)vi),

vj · z 6 0 (1 6 j 6 L, j 6= i),

±ei · z 6 0.

(6.10)

In the last inequality, we take+ for (6.7) and (6.8), and− for (6.6). By (3.3), (3.7) and (3.8),

(6.11) v′
0 +

∑

j<i

gjvj + Aei +
L−1
∑

j=i+1

(gj + Agj−i)vj + (g∗L + Ag∗L−i)vL = 0.

To ensure that each vector on the left of (6.10) has a positive coefficient, we assume thatA > 0 for proving
(6.6), andA < 0 otherwise. We may also assume thatξ − β′gi > 0, else the volume in question is zero by
(6.9) (each coordinate ofz is non-negative). By Lemma 3.6, together with (3.9), Lemma 3.7 and (6.4),

TL(xi ⋚ β, xL > α) 6 T ∗
L

gi

|A|(ξ + Aβ′)L
L−1
∏

j=i+1

(

1 + A
gj−i

gj

)−1 (

1 + A
g∗L−i

g∗L

)−1

≪ TL
gi

|A|
(ξ + Aβ′)L

(1 + A̺i)L−i
.

(6.12)

Sinceβ 6 αgL−i 6 gL−i/gL, if A > 0 then

ξ + Aβ′ = (1 + Aβ)

(

1 − αgL
1 + AgL−i/gL

1 + Aβ

)

6 (1 + Aβ)(1 − αgL) 6 (1 + Aβ)e−αgL .

TakingA = Lθ
i̺i gives (6.6). If−gi 6 A < 0, then by (6.4),

ξ + Aβ′ 6 (1 + Aβ) (1 − αgL(1 − gigL−i/gL)) 6 (1 + Aβ)e−
2

3
αgL .

For (6.7), we takeA = −gi, then use

(1 − λi)
i−L(1 − βgi)

L =
(1 − λi)

i

(1 + θ)L

(

1 +
θ + iλi/L

1 − λi

)L

6
(1 − λ)i

(1 + θ)L
exp

{

θL + iλi

1 − λi

}

together with iλi
1−λi

= iλ
1−λ + O(1) (a corollary of Lemma 3.7). TakingA = Lθ

i̺i gives (6.8), since

(6.13)
(1 + θL/i)i

(1 + θ)L
= exp







L(L − i)

i
θ2



−1

2
−

∞
∑

j=1

(−θ)j Lj + iLj−1 + · · · + ij

(j + 2)ij











and all summands in the sum onj are positive. ¤

We apply Lemma 6.1 to determine the size ofqi(n) whenn is a pre-image of a “normal” totient. Recall
thatV (x; C ) is the number of totientsm 6 x with a pre-imagen satisfyingC . An inequality we will use is

(6.14)
∑

v∈V

P+(v)6y

1

v
≪ eC(log3 y)2 ,

coming from the first part of Lemma 4.3 and Theorem 1.

Lemma 6.2. Supposex is large,β > 0, and1 6 i 6 L0 = L0(x). Defineθ by (1 + θ)β = ̺i(1 − i/L0).

(a) If 0 < θ 6 i
3L0

, thenV
(

x; log2 qi(n)
log2 x 6 β

)

≪ V (x)
i

θL0
exp

{

−L0(L0 − i)

4i
θ2

}

.

(b) If i
3L0

6 θ 6 1
8 , thenV

(

x; log2 qi(n)
log2 x 6 β

)

≪ V (x)e−θL0/13.
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(c) If −1
3 6 θ < −0.29 i

L0
, thenV

(

x; log2 qi(n)
log2 x > β

)

≪ V (x)eθL0/10.

(d) If − iλi
L0

6 θ < 0, thenV
(

x; log2 qi(n)
log2 x > β

)

≪ V (x) i
|θ|L0

exp
{

−0.49L0(L0−i)
i θ2

}

.

Proof. Let A be a sufficiently large, absolute constant. We may assume that

A 6 i 6 L0 − A, |θ| > A

(

i

L0(L0 − i)

)1/2

for (a) and (d),

|θ| >
A

L0
for (b) and (c),

(6.15)

for otherwise the claims are trivial. PutΨ =

⌈

|θ|
√

2L0(L0−i)
i

⌉

for (a) and (d), and putΨ =
⌈

√

2|θ|L0

⌉

for

parts (b) and (c). LetL = L0 − Ψ. By (6.15), for the range ofθ given in each part, we havei 6 L − 2.
Defineξi by (6.1). By Theorem 16, the number of totientsm 6 x with a preimagen satisfyingx 6∈ SL(ξ),
xL 6 2

log2 x or m < x
log x is O(V (x)e−

1

4
Ψ2

). Let S = SL(ξ) ∩ {xi 6 β} for (a) and (b), andS =

SL(ξ) ∩ {xi > β} for (c) and (d). As in the proof of (4.10), forb > 2 let Nb(x) be the number of totients
for whichn > x

log x , x ∈ S , and b
log2 x 6 xL < b+1

log2 x . By the argument leading to (4.10) and using (6.14),

(6.16) V

(

x;
log2 qi(n)

log2 x
⋚ β

)

≪ V (x)e−Ψ2/4 +
x

log x

∑

b>2

eC log2 bRL

(

S ∩
{

xL >
b

log2 x

}

; x

)

.

By Lemma 3.1,

RL

(

S ∩
{

xL >
b

log2 x

}

; x

)

≪ (log2 x)L Vol [S ∩ {xL > b/ log2 x}]+ε , ε =
1

log2 x
.

Let α = b
log2 x . By Lemma 3.9 (α′, yj andξ′j defined here),y ∈ S ∗

L , yi ⋚ β′ andyL > α′, where

(6.17) β′ =
β

ξ′0 · · · ξ′i−1

= β
(

1 − O
(

e−(L0−i)/40
))

.

By Lemma 3.2 and Corollary 3.3,

(6.18) Vol [S ∩ {xL > b/ log2 x}]+ε ≪ T ∗
L

(

xi ⋚ β′, xL > α′) .

Defineθ′ by 1 + θ′ = (1 + θ)ξ′0 · · · ξ′i−1, so thatβ′(1 + θ′) = ̺i(1 − i/L). By (6.17),θ′ − θ = (1 +

θ)(ξ′0 · · · ξ′i−1 − 1) ≪ e−
1

40
(L0−i). By (6.15), ifA is large enough then

(6.19) 0 < θ′ − θ 6 Ae−
1

40
(L0−i) 6

|θ|
1000

.

We now apply Lemma 6.1 (withβ, θ replaced byβ′, θ′). For parts (a) and (b), (6.19) implies0 < θ′ 6 1
7

and we may apply (6.6). For (c), (6.19) implies−1
8 6 θ′ 6 −0.288 i

L0
and we apply (6.7). For (d), (6.19)

gives− iλi
L0

6 θ′ < 0 and we apply (6.8). Combining these estimates with (6.18), we arrive at

(6.20) RL

(

S ∩
{

xL >
b

log2 x

}

; x

)

≪ (log2 x)LTLBe−
2

3
α′gL ,

where

B =



















i
θ′L

(1+θ′L/i)i

(1+θ′)L for (a),(b)

exp
{

Ki + λi
1−λi

θ′L + L(θ′ − log(1 + θ′))
}

for (c)

i
(−Lθ′) exp

{

−L(L−i)
2i (θ′)2

}

for (d).
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By (1.7) and Lemma 3.7, we haveα′LgL ≫ αL̺−L ≫ ̺−Ψ. Hence, for some absolute constantC1 > 0,
∑

b>2

eC log2 b− 2

3
α′LgL ≪ ̺−Ψ

∑

k>0

eC log2((k+1)̺−Ψ)−C1k = exp

{

Ψ2

4C
+ O(Ψ)

}

.

Since Corollary 3.5 implies that(log2 x)LTL ≪ Z(x) exp{−Ψ2/(4C) + O(Ψ)}, inequalities (6.16) and
(6.20) now imply

V

(

x;
log2 qi(n)

log2 x
⋚ β

)

≪ V (x)
[

e−
1

4
Ψ2

+ BeO(Ψ)
]

.

To complete part (a), observe that the absolute value of the summands in (6.13) (with θ replaced byθ′) are
decreasing. From the definition ofΨ and (6.19), we obtainO(Ψ) 6 L0(L0−i)

100i θ2 + O(1) and

B 6 exp

{

L(L − i)

i
(θ′)2

(

−1

2
+

L + i

3i
θ′

)}

6 exp

{

−5(θ′)2L(L − i)

18i

}

6 exp

{

−0.27
L(L − i)

i
θ2

}

≪ exp

{

−0.26
L0(L0 − i)

i
θ2

}

.

this gives part (a) of the lemma. For (b), (6.19) impliesθ′L/i > 0.33, soi log(1 + θ′L/i) 6 0.08642Lθ′.
Also, log(1 + θ′) > 0.9423θ′. Therefore,B 6 e−0.0781Lθ′ ≪ e−0.077L0θ, whenceBeO(Ψ) ≪ e−

1

13
L0θ. For

(c), we useθ′− log(1+θ′) 6 0.0683θ′. If i 6 100, Ki = O(1) and λi
1−λi

> λ1

1−λ1
> 0.265, and fori > 100,

Ki 6 0.302(−Lθ′) and λi
1−λi

> 0.4781. In either case,B ≪ e0.106Lθ′ and thereforeBeO(Ψ) ≪ e
1

10
L0θ by

(6.19). Finally, part (d) follows from (6.19) by similar calculations to those inpart (a). ¤

Proof of Theorem 10.Letxi = log2 qi(n)
log2 x . Consider first the case0 6 ε 6 i

3L0
. If xi 6 (1−ε)βi 6 βi

1+ε , take

θ = ε in Lemma 6.2 (a). Ifxi > (1 + ε)βi, takeθ = − ε
1+ε ∈ [−ε,−3

4ε]. Use Lemma 6.2 (d) ifθ > − iλi
L0

and Lemma 6.2 (c) otherwise. This yields the desired bounds, since in the lattercaseθ > − 4i
10(L0−i) .

Next, assume i
3L0

6 ε 6 1
8 . If xi 6 (1 − ε)βi, takeθ = ε in Lemma 6.2 (b). Ifxi > (1 + ε)βi, take

θ = − ε
1+ε ∈ [−ε,−8

9ε] in Lemma 6.2 (c). We may do so sinceθ 6 −0.29 i
L0

. ¤

Proof of Theorem 11.Assumeg > 10 andh > 10, for otherwise the conclusion is trivial. Let

εi = g

√

i log(L0 − i)

L0(L0 − i)
(1 6 i 6 L0 − h)

and letNi be the number of totients6 x with a preimage satisfying| log2 qi(n)
βi log2 x − 1| > εi. First, suppose that

εi 6 i
3L0

, and letk = L0 − i. We have k
log k > 4g2, for if not, thenk < 4g2 log L0 < 1

2L0 and consequently

εi > g
√

log k
2k > g2 > 10. By Theorem 10,

Ni ≪ V (x) exp

[

−g2 log(L0 − i)

4
+

1

2
log

(

i(L0 − i)

g2L0

)]

≪ V (x)(L0 − i)
1

2
− 1

4
g2

.

Summing overi 6 L0 − 4g2 and usingg > 10, we obtain

(6.21)
∑

εi6i/(3L0)

Ni ≪ V (x)(4g2)
3

2
− 1

4
g2 ≪ V (x)g−

1

2
g2

.

Next, suppose thati3L0
< εi 6 1

8 . Sincei 6 9g2 L0 log(L0−i)
L0−i 6 18g2 log L0, Theorem 10 gives

(6.22)
∑

i/(3L0)<εi61/8

Ni ≪ V (x)g2(log L0)e
− g

13

√
log L0 ≪ V (x)e−

g
14

√
log L0 .
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Finally, if εi > max( i
3L0

, 1
8), then| log2 qi(n)

βi log2 x − 1| > ε′i := max( i
3L0

, 1
8). By Theorem 10,

∑

εi>max(i/(3L0)),1/8)

Ni ≪ V (x)

(

L0e
− 1

104
L0 +

∑

3

8
L0<i6L0−h

exp

[

−L0(L0 − i)

4i

(

i

3L0

)2
] )

≪ V (x)



e−
1

105
L0 +

∑

i6L0−h

e−
1

96
(L0−i)



 ≪ V (x)e−
h
96 .

(6.23)

Together, inequalities (6.21)–(6.23) give Theorem 11. ¤

Proof of Theorem 12.Assumeη > 1000
log3 x , for otherwise the theorem is trivial. LetΨ = Ψ(x) =

⌈√

η log3 x
⌉

,

L = L0(x) − Ψ, defineξi by (6.1) and setS = exp{(log2 x)100}. Let n be a generic pre-image of a totient
m 6 x, and setqi = qi(n) andxi = xi(n; x) for 0 6 i 6 L. Also, definer by m = φ(q0 · · · qL)r. Let
εi = max(0.82η, i

3L0
). Let U be the set of totientsm 6 x satisfying one of four conditions:

(1) (x1, x2, . . . , xL) 6∈ SL(ξ),
(2) m is notS-nice,

(3) ∃i 6 L0

3 :
∣

∣

∣

xi
βi

− 1
∣

∣

∣
> εi,

(4) Ω(r) > (log2 x)1/2.

By Theorem 16 and Lemma 2.8, the number of totientsm 6 x satisfying (1) or (2) isO(V (x)(log2 x)−
1

4
η).

Theorem 10 implies that the number of totients satisfying (3) is

≪ V (x)

[

(ηL0)e
−0.82ηL0/13 +

∑

i>2.46ηL0

e−i/39

]

≪ V (x)e−
1

16
ηL0 ≪ V (x)

(log2 x)η/10
.

Consider now totients satisfying (4), but neither (1), (2) nor (3). By (3), q1 · · · qL 6 x1/3. By Lemma 3.8,

log2 P+(r) 6 xL log2 x 6 10̺L log2 x 6 20̺−Ψ log3 x < exp(
√

log3 x).

By Lemma 2.3, the number of totients withr > R := exp exp( 1
10

√

log2 x) is O( x
log x). Now suppose

r < R. Givenq1, . . . , qL andr, the number of possibilities forq0 is

≪ x

q1 · · · qLr log x
.

Applying Lemma 3.1, followed by Lemmas 3.4 and 3.10, gives
∑ 1

q1 · · · qL
6 RL(ξ) ≪ Z(x)e−

1

4
Ψ2 ≪ Z(x)(log2 x)−

1

4
η.

For r 6 y 6 R, we haveΩ(r) > 10 log2 R > 10 log2 y. Hence, the number of possibler 6 y is
O(y/ log2 y) by Lemma 2.2. Therefore,

∑

r 1/r = O(1) and we conclude that

(6.24) |U | ≪ V (x)(log2 x)−
1

10
η.

Assume now that a totientm 6∈ U . Since every prime factor of a preimagen is S-normal,

Ω(m) = (1 + x1 + · · · + xL) log2 x + O
(

(log2 x)
1

2 (log3 x)
3

2

)

.

Since (3) fails, Lemma 3.8 implies
∑

16i6L

xi 6
∑

i6L0/3

̺i(1 + 0.82η) +
∑

L0/3<i6L

5̺⌊L0/3⌋ 6
̺

1 − ̺
+ 0.98η
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and
∑

16i6L

xi >
∑

i6L0/3

βi(1 − εi) >
∑

i6L0/3

̺i(1 − 0.82η) −
∑

i>1

i̺i

L0
−

∑

i>2.46L0η

i̺i

3L0

>
̺

1 − ̺
(1 − 0.82η) − 4̺L0/3−1 − 5

L0
>

̺

1 − ̺
− 0.98η.

Therefore, ifx is large then|Ω(m) − 1
1−̺ log2 x| 6 0.99η log2 x for m 6∈ U . This proves the first part of

Theorem 12. The second part follows easily, since a totientm 6∈ U is S-nice and hence

Ω(m) − ω(m) 6
L

∑

i=0

Ω(qi − 1, 1, S) + Ω(r) ≪ (log2 x)1/2. ¤

Proof of Corollary 13. It suffices to prove the theorem withg(m) = Ω(m). Divide the totientsm 6 x
into three sets,S1, those withΩ(m) > 10 log2 x, S2, those not inS1 but with |Ω(m) − log2 x/(1 − ̺)| >
1
3 log2 x, andS3, those not counted inS1 or S2. By Lemma 2.2,|S1| ≪ x

log2 x
and by Theorem 12,

|S2| ≪ V (x)(log2 x)−1/30. Therefore

(6.25) |S3| = V (x)(1 − O((log2 x)−1/30))

and also

(6.26)
∑

m∈S1∪S2

Ω(m) ≪ |S1| log x + |S2| log2 x ≪ V (x)(log2 x)2/3.

For eachm ∈ S3, let

εm =
Ω(m)

log2 x
− 1

1 − ̺

and for each integerN > 0, letS3,N denote the set ofm ∈ S3 with N 6 |εm| log3 x < N +1. By Theorem
12, (6.25) and (6.26),

∑

m∈V (x)

Ω(m) = O(V (x)
√

log2 x) +
∑

06N61

2
log3 x

∑

m∈S3,N

Ω(m)

=
log2 x

1 − ̺
|S3| + O

(

V (x)
log2 x

log3 x

∑

N

(N + 1)e−N/10

)

=
V (x) log2 x

1 − ̺

(

1 + O

(

1

log3 x

))

. ¤

7 The distribution of A(m)

7.1 Large values ofA(m)

Proof of Theorem 3.First we note the trivial bound

|{m 6 x : A(m) > N}| ≪ x log2 x

N
≪ V (x)

log x

N
,

which implies the theorem whenN > log2 x. Suppose next thatN < log2 x. Supposex is sufficiently large
and setΨ = ⌈log log N⌉ andL = L0(x) − Ψ. Note thatΨ < 3

4L0(x). Defineξi by (6.1). By Theorem

16, the number of totientsm 6 x with a pre-imagen satisfyingx(n) 6∈ SL(ξ) is O(V (x)e−
1

4
Ψ2

) (here
x(n) = (x1(n; x), . . . , xL(n; x))). For other totientsm, all preimagesn satisfyx(n) ∈ SL(ξ). By Lemma
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3.8, xL = xL(n) 6 1/gL. For integerb ∈ {0, 1, . . . , L − 1}, let Nb be the number of these remaining
totientsm 6 x with a preimagen satisfying

b

LgL
6 xL <

b + 1

LgL
.

Put Yb = b+1
LgL

log2 x. Write n = q0 · · · qLt, so thatlog2 P+(t) 6 Yb, and letr = φ(t). Also note that
log2 Yb ≪ b̺M . As in the proof of (4.10), using Lemmas 3.1 and 3.10, together with (6.14) and Corollary
3.5, gives

Nb(x) ≪ x

log x
RL(SL(ξ) ∩ {xL > b/(LgL)}; x)

∑

r

1

r

≪ x

log x
e−C0bTLeC(log Yb)

2 ≪ V (x) exp
{

−C0b + Ψ log b + O(Ψ + log2 b)
}

.

Putb0 = ⌈Ψ2/C0⌉. The number of totients withxL > b0/(LgL) is therefore≪ V (x)e−Ψ2+O(Ψ log Ψ) ≪
V (x)e−

1

2
Ψ2

. The remaining totients have all of their preimages of the formn = q0 · · · qLt with log2 P+(t) 6
Yb0 . The number of such preimages is

≪ x

log x
RL(SL(ξ); x)

∑

log2 P+(t)6Yb0

1

φ(t)
≪ V (x)e−C0b− 1

4C
Ψ2+Zb0 .

Hence, the number of totientsm having at leastN such preimages is

≪ V (x)

N
e−C0b− 1

4C
Ψ2+Zb0 ≪ V (x)

N1/2
. ¤

7.2 Sierpiński’s Conjecture

Schinzel’s argument for deducing Sierpiński’s Conjecture for a givenk from Hypothesis H requires the
simultaneous primality of≫ k polynomials of degrees up tok. Here we preset a different approach, which
is considerably simpler and requires only the simultaneous primality of three linear polynomials. We take
a numberm with A(m) = k and construct anl with A(lm) = k + 2. Our method is motivated by the
technique used in Section 5 where many numbers with multiplicityκ are constructed from a single example.

Lemma 7.1. SupposeA(m) = k andp is a prime satisfying

(i) p > 2m + 1,
(ii) 2p + 1 and2mp + 1 are prime,

(iii) dp + 1 is composite for alld|2m exceptd = 2 andd = 2m.

ThenA(2mp) = k + 2.

Proof. Supposeφ−1(m) = {x1, . . . , xk} andφ(x) = 2mp. Condition (i) impliesp ∤ x, hencep|(q − 1)
for some primeq dividing x. Since(q − 1)|2mp, we haveq = dp + 1 for some divisord of 2m. We have
q > 2p, soq2 ∤ x andφ(x) = (q− 1)φ(x/q). By conditions (ii) and (iii), eitherq = 2p+1 or q = 2mp+1.
In the former case,φ(x/q) = m, which has solutionsx = (2p + 1)xi (1 6 i 6 k). In the latter case,
φ(x/q) = 1, which has solutionsx = q andx = 2q. ¤

SupposeA(m) = k, m ≡ 1 (mod 3), and letd1, . . . , dj be the divisors of2m with 3 6 di < 2m.
Let p1, . . . , pj be distinct primes satisfyingpi > di for eachi. Using the Chinese Remainder Theorem,
let a mod b denote the intersection of the residue classes−d−1

i mod pi (1 6 i 6 j). For everyh and
i, (a + bh)di + 1 is divisible bypi, hence composite for large enoughh. The Primek-tuples Conjecture
implies that there are infinitely many numbersh so thatp = a+hb, 2p+1 and2mp+1 are simultaneously
prime. By Lemma 7.1,A(2mp) = k + 2. As p ≡ 2 (mod 3), 2mp ≡ 1 (mod 3). Starting withA(1) = 2,
A(2) = 3, andA(220) = 5, Sierpínski’s Conjecture follows by induction onk.
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k mk k mk k mk k mk k mk k mk k mk k mk

2 1 77 9072 152 10080 227 26880 302 218880 377 165888 452 990720 527 2677248
3 2 78 38640 153 13824 228 323136 303 509184 378 436800 453 237600 528 5634720
4 4 79 9360 154 23760 229 56160 304 860544 379 982080 454 69120 529 411840
5 8 80 81216 155 13440 230 137088 305 46080 380 324000 455 384000 530 2948400
6 12 81 4032 156 54720 231 73920 306 67200 381 307200 456 338688 531 972000
7 32 82 5280 157 47040 232 165600 307 133056 382 496800 457 741888 532 2813184
8 36 83 4800 158 16128 233 184800 308 82944 383 528768 458 86400 533 3975552
9 40 84 4608 159 48960 234 267840 309 114048 384 1114560 459 1575936 534 368640
10 24 85 16896 160 139392 235 99840 310 48384 385 1609920 460 248832 535 529920
11 48 86 3456 161 44352 236 174240 311 43200 386 485760 461 151200 536 2036736
12 160 87 3840 162 25344 237 104832 312 1111968 387 1420800 462 1176000 537 751680
13 396 88 10800 163 68544 238 23040 313 1282176 388 864864 463 100800 538 233280
14 2268 89 9504 164 55440 239 292320 314 239616 389 959616 464 601344 539 463680
15 704 90 18000 165 21120 240 93600 315 1135680 390 1085760 465 216000 540 2042880
16 312 91 23520 166 46656 241 93312 316 274560 391 264960 466 331776 541 3018240
17 72 92 39936 167 15840 242 900000 317 417600 392 470016 467 337920 542 2311680
18 336 93 5040 168 266400 243 31680 318 441600 393 400896 468 95040 543 1368000
19 216 94 26208 169 92736 244 20160 319 131040 394 211200 469 373248 544 3120768
20 936 95 27360 170 130560 245 62208 320 168480 395 404352 470 559872 545 1723680
21 144 96 6480 171 88128 246 37440 321 153600 396 77760 471 228096 546 1624320
22 624 97 9216 172 123552 247 17280 322 168000 397 112320 472 419328 547 262080
23 1056 98 2880 173 20736 248 119808 323 574080 398 1148160 473 762048 548 696960
24 1760 99 26496 174 14400 249 364800 324 430560 399 51840 474 342720 549 1889280
25 360 100 34272 175 12960 250 79200 325 202752 400 152064 475 918720 550 734400
26 2560 101 23328 176 8640 251 676800 326 707616 401 538560 476 917280 551 842400
27 384 102 28080 177 270336 252 378000 327 611520 402 252000 477 336000 552 874368
28 288 103 7680 178 11520 253 898128 328 317952 403 269568 478 547200 553 971520
29 1320 104 29568 179 61440 254 105600 329 624960 404 763776 479 548352 554 675840
30 3696 105 91872 180 83520 255 257040 330 116640 405 405504 480 129600 555 4306176
31 240 106 59040 181 114240 256 97920 331 34560 406 96768 481 701568 556 1203840
32 768 107 53280 182 54432 257 176256 332 912000 407 1504800 482 115200 557 668160
33 9000 108 82560 183 85536 258 264384 333 72576 408 476928 483 1980000 558 103680
34 432 109 12480 184 172224 259 244800 334 480000 409 944640 484 1291680 559 2611200
35 7128 110 26400 185 136800 260 235872 335 110880 410 743040 485 1199520 560 820800
36 4200 111 83160 186 44928 261 577920 336 1259712 411 144000 486 556416 561 663552
37 480 112 10560 187 27648 262 99360 337 1350720 412 528000 487 359424 562 282240
38 576 113 29376 188 182400 263 64800 338 250560 413 1155840 488 1378080 563 3538944
39 1296 114 6720 189 139104 264 136080 339 124416 414 4093440 489 2088000 564 861120
40 1200 115 31200 190 48000 265 213120 340 828000 415 134400 490 399168 565 221760
41 15936 116 7200 191 102816 266 459360 341 408240 416 258048 491 145152 566 768000
42 3312 117 8064 192 33600 267 381024 342 74880 417 925344 492 2841600 567 2790720
43 3072 118 54000 193 288288 268 89856 343 1205280 418 211680 493 1622880 568 953856
44 3240 119 6912 194 286848 269 101376 344 192000 419 489600 494 1249920 569 7138368
45 864 120 43680 195 59904 270 347760 345 370944 420 1879200 495 2152800 570 655200
46 3120 121 32400 196 118800 271 124800 346 57600 421 1756800 496 2455488 571 3395520
47 7344 122 153120 197 100224 272 110592 347 1181952 422 90720 497 499200 572 3215520
48 3888 123 225280 198 176400 273 171360 348 1932000 423 376320 498 834624 573 2605824
49 720 124 9600 199 73440 274 510720 349 1782000 424 1461600 499 1254528 574 1057536
50 1680 125 15552 200 174960 275 235200 350 734976 425 349920 500 2363904 575 1884960
51 4992 126 4320 201 494592 276 25920 351 473088 426 158400 501 583200 576 3210240
52 17640 127 91200 202 38400 277 96000 352 467712 427 513216 502 1029600 577 1159200
53 2016 128 68640 203 133632 278 464640 353 556800 428 715392 503 2519424 578 4449600
54 1152 129 5760 204 38016 279 200448 354 2153088 429 876960 504 852480 579 272160
55 6000 130 49680 205 50688 280 50400 355 195840 430 618240 505 1071360 580 913920
56 12288 131 159744 206 71280 281 30240 356 249600 431 772800 506 3961440 581 393120
57 4752 132 16800 207 36288 282 157248 357 274176 432 198720 507 293760 582 698880
58 2688 133 19008 208 540672 283 277200 358 767232 433 369600 508 1065600 583 2442240
59 3024 134 24000 209 112896 284 228480 359 40320 434 584640 509 516096 584 6914880
60 13680 135 24960 210 261120 285 357696 360 733824 435 708480 510 616896 585 695520
61 9984 136 122400 211 24192 286 199584 361 576576 436 522720 511 639360 586 497664
62 1728 137 22464 212 57024 287 350784 362 280800 437 884736 512 4014720 587 808704
63 1920 138 87120 213 32256 288 134784 363 63360 438 1421280 513 266112 588 2146176
64 2400 139 228960 214 75600 289 47520 364 1351296 439 505440 514 2386944 589 2634240
65 7560 140 78336 215 42240 290 238464 365 141120 440 836352 515 126720 590 4250400
66 2304 141 25200 216 619920 291 375840 366 399360 441 60480 516 2469600 591 2336256
67 22848 142 84240 217 236160 292 236544 367 168960 442 1836000 517 2819520 592 1516320
68 8400 143 120000 218 70560 293 317520 368 194400 443 866880 518 354816 593 268800
69 29160 144 183456 219 291600 294 166320 369 1067040 444 1537920 519 1599360 594 656640
70 5376 145 410112 220 278400 295 312000 370 348480 445 1219680 520 295680 595 1032192
71 3360 146 88320 221 261360 296 108864 371 147840 446 349440 521 1271808 596 4743360
72 1440 147 12096 222 164736 297 511488 372 641520 447 184320 522 304128 597 4101120
73 13248 148 18720 223 66240 298 132480 373 929280 448 492480 523 3941280 598 2410560
74 11040 149 29952 224 447120 299 354240 374 1632000 449 954720 524 422400 599 9922560
75 27720 150 15120 225 55296 300 84480 375 107520 450 1435200 525 80640 600 427680
76 21840 151 179200 226 420000 301 532800 376 352512 451 215040 526 508032

TABLE 2. Smallest solution toA(m) = k
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Table 2 of [34] lists the smallestm, denotedmk, for whichA(m) = k for 2 6 k 6 100. We extend the
computation tok 6 600, listing mk for k 6 600 in Table 2.

7.3 Carmichael’s Conjecture

The basis for computations of lower bounds for a counterexample to Carmichael’s Conjecture is the
following Lemma of Carmichael [5], as refined by Klee [24]. For short, lets(n) =

∏

p|n p denote the
square-free kernel ofn.

Lemma 7.2. Supposeφ(x) = m and A(m) = 1. If d|x, (d, x/d) = 1, s(φ(d))|x, e| x/d
s(x/d) and P =

1 + eφ(d) is prime, thenP 2|x.

From Lemma 7.2 it is easy to deduce223272432|x. Here, following Carmichael, we break into two cases:
(I) 32 ‖ x and (II) 33|x. In case (I) it is easy to show that132|x. From this point onward Lemma 7.2 is
used to generate a virtually unlimited set of primesP for which P 2|x. In case (I) we search forP using
d = 1, e = 6k or d = 9, e = 2k, wherek is a product of distinct primes (other than 2 or 3) whose squares
we already know dividex. That is, if6k + 1 or 12k + 1 is prime, its square dividesx. In case (II) we try
d = 1, e = 6k andd = 1, e = 18k, i.e. we test whether or not6k + 1 and18k + 1 are prime.

As in [34], certifying that a numberP is prime is accomplished with the following lemma of Lucas,
Lehmer, Brillhart and Selfridge.

Lemma 7.3. Suppose, for each primeq dividing n − 1, there is a numberaq satisfyingan−1
q ≡ 1 and

a
(n−1)/q
q 6≡ 1 (mod n). Thenn is prime.

The advantage of using Lemma 7.3 in our situation is that for a givenP we are testing, we already know
the prime factors ofP − 1 (i.e. 2,3 and the prime factors ofk).

Our overall search strategy differs from [34]. In each case, we first find a set of 32 “small” primesP
(from here on,P will represent a prime generated from Lemma 7.2 for whichP 2|x, other than 2 or 3).
Applying Lemma 7.2, takingk to be all possible products of 1,2,3 or 4 of these 32 primes yields a setS
of 1000 primesP , which we orderp1 < · · · < p1000. This set will be our base set. In particular,p1000 =
796486033533776413 in case (I) andp1000 = 78399428950769743507519 in case (II). The calculations are
then divided into “runs”. For run #0, we take fork all possible combinations of 1,2 or 3 of the primes inS.
For j > 1, run #j tests everyk which is the product ofpj and three larger primes inS. Each candidateP is
first tested for divisibility by small primes and must pass the strong pseudoprime test with bases 2,3,5,7,11
and 13 before attempting to certify that it is prime. There are two advantages tothis approach. First, the
candidatesP are relatively small (the numbers tested in case (I) had an average of 40 digits and the numbers
tested in case (II) had an average of 52 digits). Second,P − 1 has at most 6 prime factors, simplifying
the certification process. To achieve

∏

P 2 > 101010

, 13 runs were required in case (I) and 14 runs were
required in case (II). Together these runs give Theorem 6. A total of126,520,174 primes were found in case
(I), and 104,942,148 primes were found in case (II). The computer program was written in GNU C, utilizing
Arjen Lenstra’s Large Integer Package, and run on a network of 200MHz Pentium PCs running LINUX O/S
in December 1996 (4,765 CPU hours total).

In 1991, Pomerance (see [30] and [25]) showed that

(7.1) lim inf
x→∞

V1(x)

V (x)
6

1

2
.

A modification of his argument, combined with the above computations, yields the muchstronger bound in
Theorem 7. Recall thatV (x; k) counts the totients6 x, all of whose preimages are divisible byk.

Lemma 7.4. We haveV (x; a2) 6 V (x/a).
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Proof. The lemma is trivial whena = 1 so assumea > 2. Let n be a totient withx/a < n 6 x. First
we show that for some integers > 0, a−sn is a totient with an pre-image not divisible bya2. Suppose
φ(m) = n. If a2 ∤ m, takes = 0. Otherwise we can writem = atr, wheret > 2 anda ∤ r. Clearly
φ(ar) = a1−tn, so we takes = t − 1. Next, if n1 and n2 are two distinct totients in(x/a, x], then
a−s1n1 6= a−s2n2 (sincen1/n2 cannot be a power ofa), so the mapping from totients in(x/a, x] to totients
6 x with a pre-image not divisible bya2 is one-to-one. ThusV (x) − V (x; a2) > V (x) − V (x/a). ¤

The above computations show that ifφ(x) = n andA(n) = 1, thenx is divisible by eithera2 or b2,
wherea andb are numbers greater than105,001,850,000. Supposea 6 b. By Lemma 7.4, we have

(7.2) V1(x) 6 V (x/a) + V (x/b) 6 2V (x/a).

Lemma 7.5. Supposea > 1, b > 0 andV1(x) 6 bV (x/a) for all x. Then

lim inf
x→∞

V1(x)

V (x)
6

b

a
.

Proof. Supposec = lim infx→∞
V1(x)
V (x) > 0. For everyε > 0 there is a numberx0 such thatx > x0 implies

V1(x)/V (x) > c − ε. For largex, setn = [log(x/x0)/ log a]. Then

V (x) =
V (x)

V (x/a)

V (x/a)

V (x/a2)
· · · V (x/an−1)

V (x/an)
V (x/an)

6 bn V (x)

V1(x)

V (x/a)

V1(x/a)
· · · V (x/an−1)

V1(x/an−1)
V (ax0)

6 bn(c − ε)−n(ax0) = O(x− log((c−ε)/b)/ log a).

This contradicts the trivial boundV (x) ≫ x/ log x if c > b
a +ε. Sinceε is arbitrary, the lemma follows. ¤

Theorem 7 follows immediately. Further improvements in the lower bound for a counterexample to
Carmichael’s Conjecture will produce corresponding upper bounds onlim infx→∞ V1(x)/V (x). Explicit
bounds for theO(1) term appearing in Theorem 1 (which would involve considerable work to obtain)
combined with (7.2) should give a strong upper bound forlim supx→∞ V1(x)/V (x).

Next, supposed is a totient, all of whose pre-imagesmi are divisible byk. The lower bound argument
given in Section 5 shows that for at least half of the numbersb ∈ B, the totientφ(b)d has only the pre-images
bmi. In particular, all of the pre-images of such totients are divisible byk and Theorem 8 follows.

It is natural to ask for whichk do there exist totients, all of whose pre-images are divisible byk. A short
search reveals examples for eachk 6 11 exceptk = 6 andk = 10. Fork ∈ {2, 4, 8}, taked = 218 ·257, for
k ∈ {3, 9}, taked = 54 = 2 ·33, for k = 5 taked = 12500 = 4 ·55, for k = 7, taked = 294 = 6 ·72 and for
k = 11, taked = 110. It appears that there might not be any totient, all of whose pre-images are divisible
by 6, but I cannot prove this. Any totient with a unique pre-image must havethat pre-image divisible by 6,
so the non-existence of such numbers implies Carmichael’s Conjecture.

I believe that obtaining the asymptotic formula forV (x) will require simultaneously determining the
asymptotics ofVk(x)/V (x) (more will be said in section 8) andV (x; k)/V (x) for eachk. It may even be
necessary to classify totients more finely. For instance, takingd = 4, k = 4 in the proof of Theorem 2
(section 5), the totientsm constructed haveφ−1(m) = {5n, 8n, 10n, 12n} for somen. On the other hand,
takingd = 6, k = 4 produces a different set of totientsm, namely those withφ−1(m) = {7n, 9n, 14n, 18n}
for somen. Likewise, for any givend with A(d) = k, the construction of totients in Section 5 may miss
whole classes of totients with multiplicityk. There is much further work to be done in this area.
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8 Generalization to other multiplicative functions
The proofs of our theorems easily generalize to a wide class of multiplicative arithmetic functions with

similar behavior on primes, such asσ(n), the sum of divisors function. Iff : N → N is a multiplicative
arithmetic function, we analogously define

Vf = {f(n) : n ∈ N}, Vf (x) = |Vf ∩ [1, x]|,
f−1(m) = {n : f(n) = m}, Af (m) = |f−1(m)|, Vf,k(x) = |{m 6 x : Af (m) = k}|.

(8.1)

We now indicate the modifications to the previous argument needed to prove Theorem 14. By itself, condi-
tion (1.11) is enough to prove the lower bound forVf (x). Condition (1.12) is used only for the upper bound
argument and the lower bound forVf,k(x).

The functionf(n) = n, which takes all positive integer values, is an example of why zero must be
excluded from the set in (1.11). Condition (1.12) insures that the values of f(pk) for k > 2 are not too small
too often, and thus have little influence on the size ofVf (x). It essentially forcesf(h) to be a bit larger than
h1/2 on average. It’s probable that (1.12) can be relaxed, but not too much. For example, the multiplicative
function defined byf(p) = p − 1 for primep, andf(pk) = pk−1 for k > 2 clearly takes all integer values,
while

∑

h>4, square-full

1

f(h)(log2 h)2
≪ 1.

Condition (1.12) also insures thatA(m) is finite for eachf -valuem. For example, a function satisfying
f(pk) = 1 for infinitely many prime powerspk has the property thatA(m) = ∞ for everyf -valuem.

In general, implied constants will depend on the functionf(n). One change that must be made throughout
is to replace every occurrence of “p− 1” (when referring toφ(p)) with “f(p)”, for instance in the definition
of S-normal primes in Section 2. Since the possible values off(p) − p is a finite set, Lemma 2.6 follows
easily with the new definitions. The most substantial change to be made in Section2, however, is to Lemma
2.7, since we no longer have the boundn/f(n) ≪ log2 n at our disposal.

Lemma 2.7∗. The number ofm ∈ Vf (x) for which eitherd2|m or d2|n for somen ∈ f−1(m) andd > Y

is O(x(log2 x)K/Y 2δ), whereK = maxp(p − f(p)).

Proof. The number ofm with d2|m for somed > Y is O(x/Y ). Now supposed2|n for somed > Y , and
let h = h(n) be the square-full part ofn (the largest squarefull divisor ofn). In particular,h(n) > Y 2.
From the fact thatf(p) > p − K for all primesp, we have

f(n) = f(h)f(n/h) ≫ f(h)n

h
(log2(n/h))−K .

Thus, iff(n) 6 x, then
n

h

(

log2

n

h

)

≪ x

f(h)
.

Therefore, the number of possiblen with a givenh is crudely≪ x(log2 x)K/f(h). By (1.12), the total
number ofn is at most

≪ x(log2 x)K
∑

h>Y 2

1

f(h)
≪ x(log2 x)K

Y 2δ

∑

h

hδ

f(h)
≪ x(log2 x)K

Y 2δ
. ¤

Applying Lemma 2.7∗ in the proof of Lemma 2.8 withY = S1/2 yields the same bound as claimed, since
S > exp{(log2 x)36}.

In Section 3, the only potential issue is with Lemma 3.1, but the analog oftm is ≪ exp{−δem−1}.
The only modification needed in Section 4 comes from the use ofφ(ab) > φ(a)φ(b) in the argument

leading to (4.10). IfqL ∤ w, the existing argument is fine. IfqL|w, let j = max{i 6 L : qi < qi−1}.
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SinceqL−2 > qL, j ∈ {L − 1, L}. Write f(q1 · · · qLw) = f(q1 · · · qj−1)f(w′), wherew′ = qj · · · qLw
and(x1, . . . , xj) ∈ Rj(Sj((ξ1, . . . , ξj−1)). Putv = f(w′), use the analog of (4.6) to bound

∑

1/v, and
otherwise follow the argument leading to (4.10).

In Section 5, there are several changes. For Lemma 5.1, the equation (5.1) may have trivial solutions
coming from pairsp, p′ with f(p) = f(p′). We say a primep is “bad” if f(p) = f(p′) for some prime
p′ 6= p and sayp is “good” otherwise. By (1.11) and Lemma 2.5, the number of bad primes6 y is
O(y/ log2 y), so

∑

p bad 1/p converges. In Lemma 5.1, add the hypothesis that thepi andqi are all “good”.

Possible small values off(pk) for somepk with k > 2 are another complication. For each primep, define

(8.2) Q(p) := min
k>2

f(pk)

f(p)
.

Introduce another parameterd (which will be the samed as in Theorem 2) and supposeL 6 L0 −M where
M is a sufficiently large constant depending onP0 andd. If follows from (1.12) and (8.2) that

∑

Q(p)6d

1

p
= O(d).

In the definition ofB, add the hypothesis that all primespi are “good” and replace (5.16) byQ(pi) >
max(d + K + 1, 17) for everyi. Of course, (5.13) is changed tof(n) 6 x/d. Fortunately, the numbers in
B are square-free by definition. Consider the analog of (5.18). SinceQ(pi) > d + K for eachpi, if n|n1

and one of the primesqi (0 6 i 6 L) occurs to a power greater than 1, thenφ(n1) > dφ(n). Therefore, the
L+1 largest prime factors ofn1 occur to the first power only, which forcesn1 = nmi for somei (the trivial
solutions). For nontrivial solutions, we have at least one indexi for whichpi 6= qi, and hencef(pi) 6= f(qi)
(since eachpi is “good”). Other changes are more obvious.: In (5.5), the phrase “rt + 1 andst + 1 are
unequal primes” is replace by “rt + a andst + a′ are unequal primes for some pair of numbers(a, a′) with
a, a′ ∈ P.” HereP denotes the set of possible values off(p) − p. As P is finite, this poses no problem
in the argument. Similar changes are made in several places in the argument leading to (5.7).

Only small, obvious changes are needed for Theorem 16. The rest of Section 6 needs very little attention,
as the bounds ultimately rely on Lemma 3.1 and the volume computations (which are independent off ).

It is not possible to prove analogs of Theorems 5–9 for generalf satisfying the hypotheses of Theorem
14. One reason is that there might not be any “Carmichael Conjecture” for f , e.g. Aσ(3) = 1, whereσ is
the sum of divisors function. Furthermore, the proof of Theorem 9 depends on the identityφ(p2) = pφ(p)
for primesp. If, for somea 6= 0, f(p) = p + a for all primesp, then the argument of [15] shows that if
the multiplicity k is possible andr is a positive integer, then the multiplicityrk is possible. For functions
such asσ(n), for which the multiplicity 1 is possible, this completely solves the problem of the possible
multiplicities. For other functions, it shows at least that a positive proportionof multiplicities are possible. If
multiplicity 1 is not possible, andf(p2) = pf(p), the argument in [16] shows that all multiplicities beyond
some point are possible.

We can, however, obtain information about the possible multiplicities for more generalf by an induction
argument utilizing the next lemma. Denote bya1, . . . , aK the possible values off(p) − p for primep.

Lemma 7.1∗. SupposeAf (m) = k. Letp, q, s be primes andr > 2 an integer so that

(1) (i) s andq are “good” primes,
(2) (ii) mf(s) = f(q),
(3) (iii) f(s) = rp,
(4) (iv) p ∤ f(πb) for every primeπ, integerb > 2 with f(πb) 6 mf(s),
(5) (v) dp − ai is composite for1 6 i 6 K andd|rm exceptd = r andd = rm.

ThenAf (mrp) = k + Af (1).
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Proof. Let f−1(m) = {x1, . . . , xk} and supposef(x) = mrp. By condition (iv),p|f(π) for some primeπ
which dividesx to the first power. Therefore,f(π) = dp for some divisord of mr. Condition (v) implies
that the only possibilities ford ared = r or d = rm. If d = r, thenf(π) = rp = f(p) which forces
π = s by condition (i). By conditions (ii) and (iii), we havef(x/s) = m, which gives solutionsx = sxi

(1 6 i 6 k). Similarly, if d = rm, thenπ = q andf(x/q) = 1, which hasAf (1) solutions. ¤

By the Chinese Remainder Theorem, there is an arithmetic progressionA so that condition (v) is satisfied
for each numberp ∈ A , while still allowing eachrp + ai andrmp + ai to be prime. To eliminate primes
failing condition (iv), we need the asymptotic form of the Primek-tuples Conjecture due to Hardy and
Littlewood [21] (actually only the case whereai = 1 for eachi is considered in [21]; the conjectured
asymptotic fork arbitrary polynomials can be found in [3]).

Conjecture 2 (Primek-tuples Conjecture (asymptotic version). Supposea1, . . . , ak are positive integers
andb1, . . . , bk are integers so that no prime divides(a1n + b1) · · · (akn + bk) for every integern. Then for
some constantC(a,b), the number ofn 6 x for whicha1n + b1, . . . , akn + bk are simultaneously prime is

∼ C(a,b)
x

logk x
(x > x0(a,b)).

Using (1.12), we readily obtain|{πb : f(πb) 6 y, b > 2}| ≪ y1−δ. If s is taken large enough, the
number of possiblep 6 x satisfying condition (iv) (assumingr andm are fixed and noting condition (iii)) is
o(x/ log3 x). The procedure for determining the set of possible multiplicities with this lemma will depend
on the behavior of the particular function. Complications can arise, for instance, ifm is even and all of the
ai are even (which makes condition (ii) impossible) or if the number of “bad” primes is≫ x/ log3 x.
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