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Abstract. In the first paper in this series we estimated the probability that a random
permutation π ∈ Sn has a fixed set of a given size. In this paper, we elaborate on the
same method to estimate the probability that π has m disjoint fixed sets of prescribed
sizes k1, . . . , km, where k1 + · · · + km = n. We deduce an estimate for the proportion of
permutations contained in a transitive subgroup other than Sn or An. This theorem consists
of two parts: an estimate for the proportion of permutations contained in an imprimitive
transitive subgroup, and an estimate for the proportion of permutations contained in a
primitive subgroup other than Sn or An.
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1. Introduction

In the first paper [EFG15b] in this series we showed that the proportion i(n, k) of per-
mutations π ∈ Sn having some fixed set of size k is of order k−δ(1 + log k)−3/2 uniformly
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for 1 6 k 6 n/2, where δ = 1 − 1/(log 2) − (log log 2)/(log 2). If n is even, it follows that
the proportion of π ∈ Sn contained in a transitive subgroup other than Sn or An is at least
cn−δ(log n)−3/2 for some constant c > 0. In that paper we stated our belief that a matching
upper bound holds, and that stronger upper bounds hold for odd n. The purpose of the
present paper is to prove this. Specifically, we prove the following theorem.

Here and throughout the paper the notation X � Y means that c1Y 6 X 6 c2Y for some
constants c1, c2 > 0. We will also use X � Y to mean X 6 cY for some constant c, as well
as standard O(·) and o(·) notation.

Theorem 1.1. Let T (n) be the proportion of π ∈ Sn contained in a transitive subgroup other
than Sn or An, and let p be the smallest prime factor of n. Then

T (n) �


n−δ2(log n)−3/2 if p = 2,

n−δ3(log n)−3/2 if p = 3,

n−1+1/(p−1) if 5 6 p� 1,

n−1+o(1) if p→∞,
where

δm =

∫ (m−1)/ logm

1

(log t)dt

= 1− m− 1

logm
+

(m− 1) log(m− 1)

logm
− (m− 1) log logm

logm
.

We record here the first few values of the sequence δm for easy reference:

δ2 = 0.08607 . . . , δ3 = 0.27017 . . . , δ4 = 0.50655 . . . , δ5 = 0.77733 . . . .

The theorem that T (n)→ 0 as n→∞ is due to  Luczak and Pyber [ LP93], whose method
can be used to prove T (n) = O(n−c) for some small c > 0. This theorem has been widely
hailed in the literature and has seen several applications: see for example Cameron and
Kantor [CK93] for an application to the group generated by the first two rows of a random
Latin square, Babai and Hayes [BH06] for an application to generating the symmetric group
with one random and one fixed generator, Diaconis, Fulman, and Guralnick [DFG08] for
an application to counting derangements in arbitrary actions of the symmetric group, and
Kowalski and Zywina [KZ12] and Eberhard, Green, and Ford [EFG15a] for applications to
invariable generation. The rate of decay of T (n) had remained somewhat of a mystery,
however, and this question was emphasized by Cameron and Kantor as well as by Babai and
Hayes. Theorem 1.1 therefore fills a rather large gap in our understanding of the subgroup
structure of the symmetric group.

Theorem 1.1 is actually a composite of two theorems, one about imprimitive transitive
subgroups and one about primitive subgroups. Recall that a subgroup H 6 Sn is called
imprimitive if it preserves some nontrivial partition of {1, . . . , n} into blocks. If H is tran-
sitive, then the blocks of such a partition must all have the same size. Therefore, if I(n) is
the proportion of π ∈ Sn contained in an imprimitive transitive subgroup, and I(n, ν) is the
proportion of π ∈ Sn preserving some partition of {1, . . . , n} into ν blocks of size n/ν, then

I(n) 6
∑
ν|n

1<ν<n

I(n, ν).
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On the other hand, if H does not preserve a nontrivial partition of {1, . . . , n}, then H is
called primitive. Let P (n) be the proportion of π ∈ Sn contained in a primitive subgroup
other than Sn or An. We prove the following estimates for I(n) and P (n).

Theorem 1.2. Let ν be a divisor of n. Then

I(n, ν) �


n−δν (log n)−3/2 if 1 < ν 6 4,

n−1+1/(ν−1) if 5 6 ν 6 log n,

n−1 if log n 6 ν 6 n/ log n,

n−1+ν/n if n/ log n 6 ν < n.

Thus, if n is composite and p is the smallest prime factor of n, then I(n) � I(n, p) +
n−1+O(1/ log logn), with I(n, p) as above.

Remark 1.1. The term n−1+O(1/ log logn) cannot be completely removed. In Remark 6.1, we
construct integers n for which

I(n)� log n

log log n
I(n, p).

Theorem 1.3. P (n) 6 n−1+o(1).

The theorem that I(n)→ 0 as n→∞ is due to  Luczak and Pyber [ LP93]. The somewhat
older theorem that P (n) → 0 as n → ∞ is due to Bovey [Bov80], who proved the bound
P (n) 6 n−1/2+o(1). More recently Bovey’s estimate was improved to P (n) 6 n−2/3+o(1)

by Diaconis, Fulman, and Guralnick [DFG08, Section 7], who also conjectured that P (n) 6
O(n−1). In truth, P (n) depends rather delicately on the arithmetic of n, and in fact P (n) = 0
for almost all n (see Cameron, Neumann, and Teague [CNT82]), but O(n−1) would be the
best possible bound which depends only on the size of n. For example if n happens to be
prime then every n-cycle generates a primitive subgroup; similarly, if p = n − 1 is prime
then every n-cycle is contained in a primitive subgroup isomorphic to SL2(p). Our proof of
the bound n−1+o(1) is essentially that of [DFG08], except that we insert our new bound for
I(n, ν) at a critical stage in the proof.

The proof of Theorem 1.2 is self-contained, except for a theorem we borrow from [DFG08]
to deal with ν of size n1−o(1). The proof of Theorem 1.3 on the other hand makes essential
use of the classification of finite simple groups via work of Liebeck and Saxl [LS91] classifying
primitive subgroups of small minimal degree (extended by Guralnick and Magaard [GM98]).

The connection between I(n, ν) and i(n, k) is easy to explain. Suppose π preserves a
partition of {1, . . . , n} into ν blocks of size n/ν. Then π induces a permutation π̃ ∈ Sν on
the set of blocks. If π̃ has cycle lengths d1, . . . , dm, then it follows that π has disjoint fixed
sets A1, . . . , Am such that |Ai| = din/ν and such that all cycles of π|Ai are divisible by di.
For example, assume that we have the permutation

π =

(
1 2 3 4 5 6 7 8 9
4 5 6 1 2 3 8 9 7

)
,

counted by I(9, 3), since it permutes the blocks {1, 2, 3}, {4, 5, 6} and {7, 8, 9}. Then the

induced permutation π̃ is the permutation

(
1 2 3
2 1 3

)
, whose cycle lengths are 2 and 1. We
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may then take A1 = {1, 2, 3, 4, 5, 6} and A2 = {7, 8, 9}, which are both fixed subsets of π. In
addition, π|A1 = (1 4)(2 5)(3 6) consists only of 2-divisible cycles.

The converse to the above relation holds as well : if π has disjoint fixed sets A1, . . . , Am
such that |Ai| = din/ν and such that all cycles of π|Ai are divisible by di, then π preserves
a system of ν blocks of size n/ν. We are thus naturally led to the following definition: for
k = (k1, . . . , km) such that

∑m
i=1 ki = n and d = (d1, . . . , dm), let i(n,k,d) be the proportion

of π ∈ Sn having disjoint fixed sets A1, . . . , Am such that |Ai| = ki and such that all cycles
of π|Ai are divisible by di. Then we have

max
di

i(n, (din/ν)i, (di)i) 6 I(n, ν) 6
∑
di

i(n, (din/ν)i, (di)i), (1.1)

where the max and sum run over partitions (d1, . . . , dm) of ν. Thus, at least for small ν, it
suffices to understand i(n,k,d).

Moreover, it turns out that the only nontrivial case for which we need sharp bounds is
the case in which di = 1 for each i. In this case we write just i(n,k) for i(n,k,d): this is
simpy the proportion of permutations π having disjoint fixed sets of sizes k1, . . . , km. Our
main task therefore is to establish the following estimate for i(n,k). Note that because
i(n, k) = i(n, (k, n− k)), this generalizes the main result of [EFG15b].

Theorem 1.4. Let m > 2 and assume 2 6 k1 6 · · · 6 km and
∑m

i=1 ki = n. Then

i(n,k)�m (km−1/k1)mk−δm1 (log k1)−3/2.

Moreover, if km−1 6 ck1 then

i(n,k) �m,c k−δm1 (log k1)−3/2.

In particular, if ki �m n for each i then

i(n,k) �m n−δm(log n)−3/2.

In [EFG15b], we relied on an analogy with analytic number theory wherein the problem of
estimating i(n, k) corresponds to the problem of estimating the proportion of integers n 6 x
with a divisor in a given dyadic interval (y, 2y]: this is the so-called multiplication table
problem, which was solved up to a constant factor by the second author [For08a, For08b].
Similarly, the problem of estimating i(n,k,d) is related to higher-dimensional versions of
the multiplication table problem. The connection is closest for i(n,k), which under the
analogy corresponds to the proportion of n 6 x that are decomposable as n1 · · ·nm with
ni ∈ (yi, 2yi] for each i. Except in some cases in which the sizes of the parameters yi are
too wildly different, this proportion was computed up to a constant factor by the third
author [Kou10, Kou14]. For comparison with Theorem 1.4, refer in particular to [Kou10,
Theorem 1]. Thus, as in [EFG15b], the task of proving of Theorem 1.4 is largely one of
translation.

Given the strength of the analogy with [Kou10, Theorem 1], one might hope to be able
to deduce the result directly using transference ideas. While unfortunately this does not
appear to be possible, the basic outline of the proof is the same.

When the vector d is allowed to be arbitrary, however, there are some additional com-
plications, and while there is still some connection with the generalized multiplication table
problem, in fact it is somewhat fortunate that the partitions of ν constituting the main
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contribution to I(n, ν) correspond to d for which we know how to estimate i(n,k,d) satis-
factorily, while for the rest we can get away with a crude bound.

We have made an effort to follow the exposition and technical notation previously used
in [For08a, For08b, Kou10, Kou14, EFG15b], but unfortunately many notational clashes
have been unavoidable.

Acknowledgments. We would like to thank Ben Green for helpful conversations. The
research of the second author was supported by National Science Foundation Grant DMS-
1501982, and of the third author was supported by the National Science and Engineering
Research Council of Canada and by the Fonds de recherche du Québec – Nature et tech-
nologies.

2. Outline of the proof

In this section we sketch the broad idea and initial reductions involved in the proof of
Theorem 1.2. The proof of Theorem 1.3 relies on Theorem 1.2 but is otherwise unrelated,
so we defer discussion to Section 7.

Let ν be a proper nontrivial divisor of n. When ν becomes large we will survive on a com-
bination of crude arguments and previous work of Diaconis, Fulman, and Guralnick [DFG08],
so in this outline assume ν is bounded. As explained in the introduction, our starting point
is the relation (1.1), whence we immediately infer that

I(n, ν) �ν max
di

i(n, (din/ν)i, (di)i).

The estimation of I(n, ν) for ν bounded is thus immediately subsumed by the general problem
of estimating i(n,k,d).

Call a partition (di) of ν maximizing i(n, (din/ν)i, (di)i) dominant. There is a compar-
atively simple bound for i(n,k,d) which already shows that, for every ν, every dominant
partition has the form (d, 1, . . . , 1) for some d > 1.

Lemma 2.1.

(a) If d | n, then the proportion, i(n, (n), (d)) of π ∈ Sn all of whose cycle lengths are
divisible by d satisfies n−1+1/d � i(n, (n), (d)) 6 n−1+1/d.

(b) If n = n′ + n′′, k = (k′,k′′), and d = (d′,d′′), then

i(n,k,d) 6 i(n′,k′,d′) i(n′′,k′′,d′′).

Here, we assume of course that k′ and d′ have the same length m′, k′′ and d′′ have
the same length m′′,

∑
i k
′
i = n′, and

∑
i k
′′
i = n′′

(c) For every k and d, we have that

i(n,k,d) 6 k
−1+1/d1

1 · · · k−1+1/dm
m .

(d) For every fixed ν > 1 and sufficiently large n, every dominant partition of ν has the
form (d, 1, . . . , 1) for some d > 1.

Proof. (a) The bound is trivial when d = 1, so we may suppose that d > 2. This is a
well-known result, which can be proved as follows: let fd(n) be the number of permutations
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π ∈ Sn having all cycle lengths divisible by d. Then certainly fd(0) = 1, and for n > d we
claim

fd(n) = (n− 1) · · · (n− d+ 2)(n− d+ 1)2fd(n− d). (2.1)

Indeed, to choose a permutation π all of whose cycles are d-divisible, first choose d − 1
distinct cyclic elements π(1), . . . , πd−1(1) from {2, . . . , n}, then choose πd(1) from {1, . . . , n}\
{π(1), . . . , πd−1(1)}, then choose a permutation π′ of the (n − d)-element set {1, . . . , n} \
{1, π(1), . . . , πd−1(1)} all of whose cycles are d-divisible. If πd(1) = 1 then we let π coincide
with π′ on {1, . . . , n} \ {1, . . . , πd−1(1)}; if πd(1) 6= 1 then we let π(x) = π′(x) for all
x 6= 1, and we lastly define π(πd(1)) = π′(1). There are (n − 1) · · · (n − d + 1) choices for
π(1), . . . , πd−1(1), n−d+1 choices for πd(1), and fd(n−d) choices for π′, so this proves (2.1).

Now, if d | n, then from (2.1) we have

fd(n) = (n− 1)!
n− d+ 1

n− d
n− 2d+ 1

n− 2d
· · · d+ 1

d

= (n− 1)!

n/d−1∏
j=1

(
1 +

1

jd

)

= (n− 1)! exp

n/d−1∑
j=1

1

jd
+O

(
1

d2

)
= (n− 1)! exp

(
log(n/d) + γ

d
+O

(
1

n
+

1

d2

))
,

where γ is the Euler–Mascheroni constant. This proves the lower bound. When d > 3, we
also have

n/d−1∏
j=1

(
1 +

1

jd

)
6 exp

1

d

n/d−1∑
j=1

1

j

 6 exp

(
1

d

(
1 + log

n

d

))
6 n1/d,

proving the upper bound in this case. When d = 2, one checks by hand that the inequality
holds for n < 8, and for n > 8 we have

n/d−1∏
j=1

(
1 +

1

jd

)
6

3

2
· 5

4
exp

1

2

n/2−1∑
j=3

1

j

 6 15

8
exp

(
1

2

∫ n/2

2

dt

t

)
=

15

8
(n/4)1/2 =

15

16
n1/2,

proving the upper bound in this case as well.

(b) We bound n! · i(n,k,d) by the sum, over all choices of a subset A ⊂ {1, . . . , n} of size
n′, of the number of ways of choosing a permutation π|A with disjoint fixed sets A1, . . . , Am′
and a permutation π|Ac with disjoint fixed sets Am′+1, . . . , Am, both such that, for each i,
|Ai| = ki and π|Ai has only di-divisible cycles. This proves that

n! · i(n,k,d) 6

(
n

n′

)
(n′! · i(n′,k′,d′))(n′′! · i(n′′,k′′,d′′)),

which is equivalent to (b).

(c) This follows immediately from parts (a) and (b).
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(d) If (di) is a partition of ν having at least two di > 2, then

m∑
i=1

(1− 1/di) > 1,

so by part (c),

i(n, (din/ν)i, (di)i) 6 (n/ν)−
∑m
i=1(1−1/di) 6 (n/ν)−1.

On the other hand, part (b) implies that

i(n, (n), (ν)) � n−1+1/ν ,

so (di) does not maximize i(n, (din/ν)i, (di)i) if n is large enough. �

Though in general i(n,k,d) is a rather subtle quantity, the case d = (1, 1) for instance
being the subject of the paper [EFG15b], some cases are elementary. For instance in
Lemma 2.1(a) we saw rather simply that i(n, (n), (d)) � n−1+1/d. It turns out that esti-
mation of i(n, (k1, k2), (d, 1)) is also elementary whenever d > 3.

Lemma 2.2. Let d > 3, and assume k1, k2 > 1 and that k1 is divisible by d. Then

i(n, (k1, k2), (d, 1)) � k
−1+1/d
1 .

Proof. The upper bound is contained in Lemma 2.1(c). Recall the proof, which follows from
parts (a) and (b) of that lemma: The number of ways of choosing a set A1 of size k1 is

(
n
k1

)
,

and the number of π ∈ Sk having all cycles divisible by d is � k!/k1−1/d, so

i(n, (k1, k2), (d, 1))� 1

n!

(
n

k1

)
k1!

k
1−1/d
1

k2! = k
−1+1/d
1 .

Given π ∈ Sn, let X = X(π) denote the number of acceptable choices for sets A1 of size
k1 that are fixed by π and such that π|A1 consists of d-divisible cycles. Then the argument
in the above paragraph uses the simple relations

i(n, (k1, k2), (d, 1)) = P(X > 0) 6 EX,

where the underlying probability measure is the uniform measure on Sn, and then proceeds

by showing that EX � k
−1+1/d
1 . To find a matching lower bound, we will compute the second

moment EX2, or in other words the number of pairs of k1-sets A1, A
′
1 such that π fixes both

A1 and A′1 and such that π|A1 and π|A′1 are both wholly composed of d-divisible cycles. Note
then that π must fix each of the sets A1 ∩ A′1, A1 \ A′1, A′1 \ A1, and the restriction of π to
each of these sets must be wholly composed of d-divisible cycles. The number of ways of
choosing two sets of size k1 which overlap in a set of size k11 is(

n

k11, k1 − k11, k1 − k11, k2 − k1 + k11

)
,
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so we deduce that

EX2 �
∑

06k116k1
d|k11

1

n!

(
n

k11, k1 − k11, k1 − k11, k2 − k1 + k11

)
k11!(k1 − k11)!2(k2 − k1 + k11)!

(k11 + 1)1−1/d(k1 − k11 + 1)2−2/d

=
∑

06k116k1
d|k11

1

(k11 + 1)1−1/d(k1 − k11 + 1)2−2/d

�
∑

06k116k1/2
d|k11

1

(k11 + 1)1−1/dk
2−2/d
1

+
∑

k1/2<k116k1

d|k11

1

k
1−1/d
1 (1 + k1 − k11)2−2/d

� k
−1+1/d
1 .

Hence by Cauchy–Schwarz we have

P(X > 0) >
(EX)2

EX2
� k

−1+1/d
1 .

This proves the lemma. �

On the other hand, estimation of i(n,k) (that is, i(n,k,d) in the case in which di = 1 for
each i) is not nearly so straightforward, and most of the paper will be devoted to establishing
an estimate in this case, namely Theorem 1.4. The proof of this theorem is divided over the
next three sections. Specifically we prove a useful local-global principle in Section 3, we then
prove the upper bound in Section 4, and finally we prove the lower bound in Section 5.

Assuming that we have proved Theorem 1.4, we can then combine our various bounds for
i(n,k,d) to determine the dominant partition of ν for each bounded ν. Moreover, since we
have a sharp estimate for i(n, (din/ν)i, (di)i) for each such dominant partition, we are able
to deduce a sharp estimate for I(n, ν).

Proposition 2.3. Assume ν is bounded and n is large. If ν 6 4, then the unique dominant
partition of ν is (1, . . . , 1), while if ν > 5, then the unique dominant partition of ν is (ν−1, 1).

Proof. For ν = 2, it suffices to observe from Lemma 2.1(a) that i(n, (n), (2)) � n−1/2, while by
Theorem 1.4 (alternatively, the main result of [EFG15b]) we have i(n, (n/2, n/2)) = n−δ2+o(1).
Since δ2 = 0.08 . . . < 1/2, the dominant partition of 2 is (1, 1).

Similarly, for ν = 3, just observe that i(n, (n), (3)) � n−2/3 by Lemma 2.1(a),

i(n, (2n/3, n/3), (2, 1))� n−1/2

by Lemma 2.1(c), and

i(n, (n/3, n/3, n/3)) � n−δ3+o(1)

by Theorem 1.4. Since δ3 = 0.27 . . . < 1/2, the dominant partition of 3 is (1, 1, 1).

For ν = 4, again, observe that i(n, (n), (4)) � n−3/4, that

i(n, (3n/4, n/4), (3, 1))� n−2/3,

and that

i(n, (n/4, n/4, n/4, n/4)) = n−δ4+o(1).
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By Lemma 2.1(d), the only other partition we need to consider is (2, 1, 1), and for this
partition we have from Lemma 2.1(b) and Theorem 1.4 that

i(n, (n/2, n/4, n/4), (2, 1, 1)) 6 i(n/2, (n/2), (2)) i(n/2, (n/4, n/4))

= n−1/2−δ2+o(1).

Since δ4 = 0.506 . . ., while 1/2 + δ2 = 0.508 . . ., the dominant partition of 4 is (1, 1, 1, 1).

Now, assume that ν > 5. By Lemma 2.1(d) we need only consider partitions of the form
(d, 1, . . . , 1). By parts (a) and (b) of Lemma 2.1, combined with Theorem 1.4, we have

i(n, (dn/ν, n/ν, . . . , n/ν), (d, 1, . . . , 1)) 6 i(dn/ν, (dn/ν), (d)) i((ν − d)n/ν, (n/ν, . . . , n/ν))

= n−1+1/d−δν−d+oν(1)

whenever d 6 ν − 2. We use this bound only when d > 2, since when d = 1 by Theorem 1.4
we have the slightly stronger bound

i(n, (n/ν, . . . , n/ν)) = n−δν+o(1).

Meanwhile, by Lemma 2.1(a) we have

i(n, (n), (ν)) � n−1+1/ν ,

which is always negligible since by Lemma 2.2 we have

i(n, ((ν − 1)n/ν, n/ν), (ν − 1, 1)) � n−1+1/(ν−1).

Thus the exponents we are comparing are

δν , 1− 1

d
+ δν−d (2 6 d 6 ν − 2), 1− 1

ν − 1
,

and we claim that the last of these is the smallest whenever ν > 5.

Since δm =
∫ (m−1)/ logm

1
(log t)dt, the sequence (δm)m>2 is increasing. In particular, δν >

δ6 > 1 for ν > 6, and one checks by direct computation that δ5 = 0.77 . . . > 1− 1/4 too.

Next, if 2 6 d 6 ν − 4, then

1− 1

d
+ δν−d >

1

2
+ δ4 > 1.

So, it remains to show that 1− 1/d+ δν−d > 1− 1/(ν − 1) when d ∈ {ν − 3, ν − 2}. Writing
d = ν − j, this amounts to proving that

δj >
j − 1

(ν − 1)(ν − j)
(j ∈ {2, 3}, ν > 5) ⇔ δj >

j − 1

4(5− j)
(j ∈ {2, 3}),

which one checks by direct computation. �

This completes the sketch of the proof of Theorem 1.2 when ν is bounded. As ν begins
to grow with n, we must be more careful about some of our bounds, but we can afford to
be more relaxed about others, and, by and large, the proof becomes simpler, using as key
input Lemma 2.1 and the case m = 2 of Theorem 1.4. As ν becomes very large, say of size
n1−o(1), then our method begins to falter, and we outsource most of the work to [DFG08].
For all this, see Section 6.
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3. A local-to-global principle

Given a k-tuple c = (c1, . . . , ck) of nonnegative integers, let Lm(c) be the set of all m-
tuples (

k∑
j=1

jx1j, . . . ,

k∑
j=1

jxmj

)
,

where (xij) is an m×k matrix whose entries are nonnegative integers such that
∑m

i=1 xij = cj
for each j. Note then that i(n,k) is precisely the probability of the event k ∈ Lm(c), where
c is the cycle type of a random permutation: here we say that π ∈ Sn has cycle type c if π has
exactly cj j-cycles for each j 6 n. Instead of measuring this probability directly, however,
we will use a convenient local-to-global principle which relates i(n,k) to the average size
of Lm(c), given in Proposition 3.1 below. The terminology ‘local-to-global’ means that we
turn a question about the local distribution of the set Lm(c) (whether it contains the point
k) to a question about its global distribution. Notice that if km−1 � k1 = k, then a naive
heuristic implies that the event k ∈ Lm(c) occurs with probability ≈ |Lm(c)|/km−1. Our
local-to-global estimate proves that this naive heuristic is true on average:

Proposition 3.1. Let k = k1, and let Xk = (X1, . . . , Xk), where X1, . . . , Xk are independent
Poisson random variables with EXj = 1/j. Then

i(n,k)�m

(
km−1

k

)m E|Lm(Xk)|
km−1

.

Moreover if km−1 6 ck1 then

i(n,k) �m,c
E|Lm(Xk)|

km−1
.

We start with a few basic upper bounds for Lm(c). Throughout this section we will
denote by Pm−1 the projection onto the first m − 1 coordinates, and we will often use the
observation that |Lm(c)| = |Pm−1Lm(c)|: this holds simply because Lm(c) is contained in

the hyperplane of Rm defined by x1 + · · ·+ xm =
∑k

j=1 jcj.

Lemma 3.2. Let c = (c1, . . . , ck) and c′ = (c′1, . . . , c
′
k).

(a) |Lm(c + c′)| 6 |Lm(c)| · |Lm(c′)|.
(b) |Lm(c)| 6 mc1+···+ck .
(c) If c′j1 = · · · = c′jh = 0 and c′j = cj for all other j, then |Lm(c)| 6 |Lm(c′)|mcj1+···+cjh .

Proof. (a) Suppose (xij) is such that
∑

i xij = cj + c′j for each j. We can find (yij) and (zij)
such that xij = yij + zij for all i, j, and such that

∑
i yij = cj and

∑
i zij = c′j for each j.

Thus Lm(c + c′) ⊂ Lm(c) + Lm(c′), so (a) holds.

(b) We have that

|Lm(c)| 6
k∏
j=1

|{(x1j, . . . , xmj) : x1j + · · ·+ xmj = cj}| =
k∏
j=1

(
m+ cj − 1

cj

)
6 mc1+···+ck ,

as claimed.

(c) The claimed inequality follows immediately from parts (a) and (b). �
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Lemma 3.3. Suppose that k 6 k′. Then E|Lm(Xk′)| 6 (k′/k)m−1E|Lm(Xk)|.

Proof. By Lemma 3.2(c), we have

E|Lm(Xk′)| 6 E
[
|Lm(Xk)|mXk+1+···+Xk′

]
= E|Lm(Xk)|

k′∏
j=k+1

E
[
mXj

]
= E|Lm(Xk)|

k′∏
j=k+1

e(m−1)/j.

Since
∑k′

j=k+1 1/j 6
∫ k′
k
dt/t = log(k′/k), the claimed result follows. �

We need some further notation in connection with type vectors c = (c1, . . . , ck). We define

S(c) =
k∑
j=1

jcj.

If c = (c1, . . . , cn) is the cycle type of some π ∈ Sn then note that S(c) = n. Occasionally
however we will keep track of cycle types of partial permutations, in which case S(c) can be
thought of as the total length represented by c. We define also C+(c) to be the largest j
such that cj > 0, or else zero if none exists. Similarly we define C−(c) to be the smallest j
such that cj > 0, else∞ if none exists. If c is the cycle type of π ∈ Sn then C+(c) and C−(c)
are the lengths of respectively the longest and shortest cycles of π; we will take the liberty
of also using the alternative notation C+(π) and C−(π) to denote the same quantities.

Lemma 3.4.

(a) Suppose j1, . . . , jh 6 k are distinct integers and a1, . . . , ah are positive integers. Then

E
[
|Lm(Xk)|Xa1

j1
· · ·Xah

jh

]
6
em(2a1+···+2ah )

j1 . . . jh
E|Lm(Xk)|.

(b) For each fixed r > 1, we have that

E [|Lm(Xk)|S(Xk)
r]�r,m krE|Lm(Xk)|.

(c) For each fixed r > 1, we have that

E
[

|Lm(Xk)|
max{C+(Xk), k − S(Xk)}r

]
�r,m

E|Lm(Xk)|
kr

.

Proof. (a) Define X′k by putting X ′j1 = · · · = X ′jh = 0 and X ′j = Xj for all other j. By

Lemma 3.2(c), we have |Lm(Xk)| 6 |Lm(X′k)|mXj1+···+Xjh . Thus by independence

E
[
|Lm(Xk)|Xa1

j1
· · ·Xah

jh

]
6 E [|Lm(X′k)|]

h∏
i=1

E
[
Xai
ji
mXji

]
.

The result follows immediately from this, the observation that E|Lm(X′k)| 6 E|Lm(Xk)|,
and the bound

E
[
Xa
jm

Xj
]

= e−1/j

∞∑
r=1

ra
(m/j)r

r!
6

∞∑
r=1

2ar
mr/j

r!
6
e2am

j
.
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(b) By the multinomial theorem and part (a), we have that

E [|Lm(Xk)|S(Xk)
r] =

∑
a1+···+ak=r

(
r

a1, . . . , ak

)
E

[
|Lm(Xk)|

k∏
j=1

(jXj)
aj

]

�r,m E [|Lm(Xk)|]
∑

a1+···+ak=r

k∏
j=1

kmax(0,aj−1).

Let J be the set of indices i such that ai 6= 0. For each J , the product on the right side
above is kr−|J |, and there are Or(1) choices for the numbers ai, i ∈ J , with sum r. For each
j ∈ {1, 2, . . . , r}, there are 6 kj subsets J ⊂ {1, . . . , k} of cardinality j. Thus the sum above
over a1, . . . , ar is O(kr), as claimed.

(c) We have that

E
[

|Lm(Xk)|
max{C+(Xk), k − S(Xk)}r

]
�r

E|Lm(Xk)|
kr

+ E
[
|Lm(Xk)|
(C+(Xk))r

1S(Xk)>k/2

]
,

For the second summand, we have that

E
[
|Lm(Xk)|
(C+(Xk))r

1S(Xk)>k/2

]
6

2r+1

kr+1
E
[
|Lm(Xk)|S(Xk)

r+1

(C+(Xk))r
1C+(Xk)>0

]
=

2r+1

kr+1

k∑
`=1

1

`r
E
[
|Lm(X`)|S(X`)

r+11X`>1

]
6

2r+1

kr+1

k∑
`=1

1

`r
E
[
|Lm(X`)|S(X`)

r+1X`

]
,

by Lemma 3.2(a,b). Now by straightforward modification of the proof in part (b) we have

E
[
|Lm(X`)|S(X`)

r+1X`

]
�r,m `rE|Lm(X`)|,

so

E
[
|Lm(Xk)|
(C+(Xk))r

1S(Xk)>k/2

]
�r,m

1

kr+1

k∑
`=1

E|Lm(X`)| 6
E|Lm(Xk)|

kr
. �

We also need to recall [EFG15b, Proposition 2.1].

Proposition 3.5. Let c1, . . . , ck be nonnegative integers such that n−S(c) is at least k+ 1.
Then the number of π ∈ Sn with exactly ci i-cycles for each i 6 k is

� n!

k
∏k

i=1 ci!i
ci
.

We are now ready to prove Proposition 3.1. In keeping with the analogy with analytic
number theory, in the proof we will speak about “factorizations” π = π1 · · · πm. By this we
mean simply that π has fixed sets A1, . . . , Am such that πi = π|Ai for each i. We may think
of π1, . . . , πm as partially defined permutations, and we define their cycle types accordingly.
Note in this connection that if ci is the cycle type of πi then S(ci) = |Ai|.
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3.1. The lower bound in Proposition 3.1. Recall that k = k1 6 k2 6 · · · 6 km and that
km−1 6 ck. Assume that n is sufficiently large depending on m and c. Let M = d2e2me and
h = bk/(4M)c. We also fix integers Li = Om,c(1) for i 6 m− 1. We focus our attention on
permutations π factorizing as

π = α

(
m−1∏
i=1

Li∏
j=1

σij

)
β,

where every cycle of α has length 6 h, the total length of α is |α| < Mh, each σij is a cycle
of length in the range Mh < |σij| < 3Mh, and all cycles of β have length > 3Mh. If α is of
type c = (c1, . . . , ch) and |σij| = `ij for each i, j, then we further assume that(

ki −
Li∑
j=1

`ij

)m−1

i=1

∈ Pm−1Lm(c). (3.1)

This implies that π is counted by i(n,k). Indeed, (3.1) is equivalent to the existence of
non-negative integers (xij)i6m−1,j6h such that

ki =

Li∑
j=1

`ij +
h∑
j=1

jxij (1 6 i 6 m− 1)

and
∑m−1

i=1 xij 6 cj. This means that there are sets A1, . . . , Am−1 of sizes k1, . . . , km−1,

respectively, left invariant by π. We then define Am = {1, . . . , n} \
⋃m−1
j=1 Aj, which is also

kept invariant by π and has size km. Thus π as above is counted by i(n,k), as claimed.

Now, observe that (3.1) implies that
∑Li

j=1 `ij 6 ki for each i 6 m− 1, so

n− |α| −
m−1∑
i=1

Li∑
j=1

`ij > n− |α| −
m−1∑
i=1

ki = km − |α| > km−1 −Mh > k −Mh > 3Mh.

Thus Proposition 3.5 applies and asserts that the number of such π is at least

� n!

L!k
∏

i,j `ij
∏h

i=1 ci!i
ci
�L,m

n!

hL+1
∏h

i=1 ci!i
ci
, (3.2)

where L =
∑m−1

i=1 Li is the total number of σij.

Fix c such that S(c) 6 Mh, and suppose Li and (`ij)16i6m−1,16j6Li−1 have been chosen
so that each `ij is in the range Mh < `ij < 3Mh and

2Mh < ki −
Li−1∑
j=1

`ij < 3Mh (1 6 i 6 m− 1). (3.3)

Then, since S(c) 6Mh, the number of (`i,Li)16i6m−1 satisfying Mh < `i,Li < 3Mh and (3.1)
is precisely |Pm−1Lm(c)| = |Lm(c)|. Since ck > ki > k and h 6 k/(4M), we can choose
Li �m,c 1 so that the number of (`ij)16j6Li−1 satisfying (3.3) is �m,c (Mh)Li−1. Thus from
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(3.2),

i(n,k)�m,c

∑
c1,...,ch>0
S(c)6Mh

(∏m−1
i=1 hLi−1

)
|Lm(c)|

hL+1
∏h

i=1 ci!i
ci

=
1

hm

∑
c1,...,ch>0
S(c)6Mh

|Lm(c)|∏h
i=1 ci!i

ci

�
E
[
|Lm(Xh)|1S(Xh)6Mh

]
hm−1

.

To bound this from below, we use the inequality

1S(Xh)6Mh > 1− S(Xh)

Mh
.

By Lemma 3.4(a), we have

E [|Lm(Xh)|S(Xh)] =
h∑
j=1

jE [|Lm(Xh)| ·Xj] 6 he2mE|Lm(Xh)|,

so

E
[
|Lm(Xh)|1S(Xh)6Mh

]
>

(
1− he2m

M

)
E|Lm(Xh)| >

1

2
E|Lm(Xh)|

by our choice of M . Thus

i(n,k)�m,c
E|Lm(Xh)|

hm−1
.

The lower bound in Proposition 3.1 follows from the above inequality and Lemma 3.3.

3.2. The upper bound in Proposition 3.1. Put k = k1 and K = km−1. Suppose that
π ∈ Sn has invariant sets of sizes k1, . . . , km. Then

π = π1π2 · · · πm,

where πi is a product of disjoint cycles of total length ki. Fix a permutation τ ∈ Sm
such that C+(πτ(1)) 6 · · · 6 C+(πτ(m)) and, for each i, choose a cycle σi of πτ(i) of length
`i = C+(πτ(i)). Note then that `1 6 k and `m−1 6 K. We can then write π as a product of
disjoint permutations

π = αα′σ1 · · ·σm−1β,

where C+(α) 6 `1, the permutations in α′ have lengths in the range (`1, `m−1), and C−(β) >
`m−1, with σm being one of the cycles of β. If c = (c1, . . . , cK) and c′ = (c′1, . . . , c

′
K) are the

cycle types of α and α′, respectively, then

ck+1 = · · · = cK = 0, (3.4)

c′1 = · · · = c′`1 = 0, (3.5)

and also

(kτ(i) − `i)m−1
i=1 ∈ Pm−1Lm(c + c′). (3.6)
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Moreover, since all cycles of πτ(1) other than σ1 are cycles of α, we must have `1 +S(c) > k.
Therefore

`m−1 > · · · > `1 > Q(c) := max{C+(c), k − S(c)}. (3.7)

In particular, by (3.5) we have

c′1 = · · · = c′Q(c) = 0, (3.8)

We can now show our hand. We will bound the number of choices for π by choosing first
τ ∈ Sm, then c such that (3.4) holds, then c′ such that (3.8) holds, (`i) such that (3.7) and
(3.6) hold, and finally disjoint α, α′, σ1, . . . , σm−1, β of total length n such that α has type c,
α′ has type c′, σi is a cycle of length `i for each i, and every cycle of β has length at least
`m−1 and at least one cycle of length `m.

Given c, c′, `1, . . . , `m−1, by Proposition 3.5 the number of choices for π = αα′σ1 · · ·σm−1β
is

� n!

`m−1

K∏
j=1

1

(cj + c′j + |{i < m : `i = j}|)!jcj+c′j+|{i<m:`i=j}|

6
n!

`1 · · · `m−2`2
m−1

k∏
i=1

1

ci!ici

K∏
j=`1+1

1

c′j!j
c′j
.

Thus

i(n,k)�
∑
τ∈Sm

∑
c,c′

`1,...,`m−1

(3.4),(3.8),(3.7),(3.6)

1

`1 · · · `m−2`2
m−1

k∏
i=1

1

ci!ici

K∏
j=`1+1

1

c′j!j
c′j

6 m!
∑
c,c′

C+(c)6k
c′i=0,i6Q(c)

|Lm(c + c′)|
Q(c)m

k∏
i=1

1

ci!ici

∏
Q(c)<j6K

1

c′j!j
c′j

6 m!
∑
c

C+(c)6k

|Lm(c)|
Q(c)m

k∏
i=1

1

ci!ici

∑
c′

c′i=0,i6Q(c)

∏
Q(c)<j6K

mc′j

c′j!j
c′j
,

by Lemma 3.2(a,b). Calculating the sum over c′, we find that

i(n,k)�
∑
c1,...,ck

|Lm(c)|
Q(c)m

k∏
i=1

1

ci!ici

∏
Q(c)<j6K

em/j �m Km
( k∏
i=1

e1/i
)
E
[
|Lm(Xk)|
Q(Xk)2m

]
�m

Km

k2m−1
E|Lm(Xk)|,

by Lemma 3.4(c), which proves the upper bound in Proposition 3.1.
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4. The upper bound in Theorem 1.4

We now turn to the upper bound in Theorem 1.4. Having proved our local-global principle
Proposition 3.1, our aim is now to prove that

E|Lm(Xk)| �m km−1−δm(log k)−3/2. (4.1)

We begin with

E|Lm(Xk)| �
1

k

∑
c1,...,ck>0

|Lm(c)|∏k
j=1 cj!j

cj
. (4.2)

If we fix r = c1 + · · ·+ ck, then1

∑
c1+···+ck=r

|Lm(c)|∏k
j=1 cj!j

cj
=

1

r!

k∑
a1,...,ar=1

|L ∗
m(a)|

a1 · · · ar
, (4.3)

where L ∗
m(a) is the set of all m-tuples(∑

j∈P1
aj, . . . ,

∑
j∈Pmaj

)
as (P1, . . . , Pm) runs over all ordered partitions of {1, . . . , r}. From (4.2) and (4.3) we then
have

E|Lm(Xk)| �
1

k

∑
r

1

r!

k∑
a1,...,ar=1

|L ∗
m(a)|

a1 · · · ar
. (4.4)

The most common way for |L ∗
m(a)| to be small is for many of the ai to be small. To

capture this, let ã1 6 ã2 6 · · · be the increasing rearrangement of the sequence a (the order
statistics of a). Following the proof of Lemma 3.2(c), we find that

|L ∗
m(a)| = |L ∗

m(ã)| 6 |L ∗
m(ã1, . . . , ãj, 0, . . . , 0)| ·mr−j,

for any j ∈ {0, 1, . . . , r}. Since L ∗
m(ã1, . . . , ãj, 0, . . . , 0) ⊂ [0, ã1 + · · ·+ ãj]

r, we find that

|L ∗
m(a)| 6 G(a) := min

06j6r
(1 + ã1 + · · ·+ ãj)

m−1mr−j. (4.5)

It is not unreasonable to expect that

k∑
a1,...,ar=1

G(a)

a1 · · · ar
∼
∫

[1,k]r

G(t)

t1 · · · tr
dt = (log k)r

∫
[0,1]r

G(kξ1 , . . . , kξr)dξ, (4.6)

where here we have enlarged the domain of G to include r-tuples of positive real numbers.
However, G is not an especially regular function and so (4.6) is perhaps too much to hope
for. The function G is, however, increasing in every coordinate, and we may exploit this to
prove an approximate version of (4.6).

1To see the equality (4.3), associate to each vector a the vector c with ci the number of indices j such that

aj = i. Then Lm(c) = L ∗
m(a),

∏k
j=1 j

cj = a1 · · · ar, and each c comes from r!/(c1! · · · ck!) different choices
of a. If one thinks of c1, . . . , ck as representing the number of j-cycles for j 6 k in a random permutation
π ∈ Sn (which is only really valid in the limit n→∞, with k fixed), then one can think of a1, . . . , ar as the
lengths of the cycles of length at most k, in no particular order.
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Lemma 4.1. For any r > 1, we have

k∑
a1,...,ar=1

|L ∗
m(a)|

a1 · · · ar
� mr(1 + log k)rr!

∫
Ωr

min
06j6r

m−j(1 + kξ1 + · · ·+ kξj)m−1dξ,

where Ωr = {ξ : 0 6 ξ1 6 · · · 6 ξr 6 1}.

Proof. Write ha for the harmonic sum
∑a

j=1 1/j. Motivated by the equality

1

a
=

∫ exp(ha)

exp(ha−1)

dt

t
,

define the product sets

R(a) =
r∏
i=1

[exp (hai−1) , exp (hai)] .

Then (4.5) implies that

k∑
a1,...,ar=1

|L ∗
m(a)|

a1 · · · ar
6

k∑
a1,...,ar=1

G(a)

a1 · · · ar
=

k∑
a1,...,ar=1

G(a)

∫
R(a)

dt

t1 · · · tr
.

Consider some t ∈ R(a). Writing t̃1 6 t̃2 6 . . . 6 t̃r for the increasing rearrangement of t,
and noting that ai < aj implies ti 6 tj, we have

exp (hãi−1) 6 t̃i 6 exp (hãi) (1 6 i 6 r).

In particular, from the inequality ha > log(a+ 1) we see that t̃i > ãi for all i. Hence

G(a) 6 min
06j6r

(1 + t̃1 + · · ·+ t̃j)
m−1mr−j = G(t)

for all t ∈ R(a). Thus

k∑
a1,...,ar=1

G(a)

∫
R(a)

dt

t1 · · · tr
6

k∑
a1,...,ar=1

∫
R(a)

G(t)

t1 · · · tr
dt

=

∫
[1,exp(hk)]r

G(t)

t1 · · · tr
dt

= hrk

∫
[0,1]r

G(eξ1hk , . . . , eξrhk)dξ.

The lemma now follows from the symmetry of the integrand and the bound hk 6 1+log k. �

Having established Lemma 4.1, we can finish the proof of (4.1) by quoting [Kou10,
Lemma 4.4]. Indeed, in the notation of that paper∫

Ωr

min
06j6r

m−j(1 + kξ1 + · · ·+ kξj)m−1dξ = Ur

(
m− 1

logm
log k; m− 1

)
,

and thus by (4.4) and Lemma 4.1 we have

E|Lm(Xk)| �m
1

k

∑
r

mr(1 + log k)rUr

(
m− 1

logm
log k; m− 1

)
.
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Now, by [Kou10, Lemma 4.4] we have

Ur

(
m− 1

logm
log k; m− 1

)
� 1 + |r − r∗|2

(r + 1)!(mr−r∗ + 1)

uniformly for 0 6 r 6 10(m− 1)r∗, where

r∗ =

⌊
m− 1

logm
log k

⌋
.

Otherwise, we use the trivial bound (from the j = 0 term in the minimum)

Ur

(
m− 1

logm
log k; m− 1

)
6

1

r!
.

Therefore

k · E|Lm(Xk)| �m

∑
06r6r∗

mr(1 + log k)r(1 + |r − r∗|2)

(r + 1)!

+
∑

r∗<r610(m−1)r∗

mr∗(1 + log k)r(1 + |r − r∗|2)

(r + 1)!

+
∑

r>10(m−1)r∗

mr(1 + log k)r

r!

� mr∗(1 + log k)r∗

(r∗ + 1)!
,

since 10(m− 1)r∗ > 5m(1 + log k) for large enough k in terms of m. Stirling’s formula then
completes the proof of (4.1) and thus that of the upper bound in Theorem 1.4.

5. The lower bound in Theorem 1.4

We now turn to the lower bound in Theorem 1.4. Having proved our local-global principle
Proposition 3.1, our aim is now to prove that

E|Lm(Xk)| �m km−1−δm(log k)−3/2. (5.1)

5.1. A double application of Hölder’s inequality. We begin as in Section 4 with (4.4),
or rather with a slight variant. Let

J = blog kc,
suppose that b = (bj)16j6J is a vector of arbitrary nonnegative integers, set

r = b1 + · · ·+ bJ ,

and consider that part of the sum in (4.2) in which∑
i∈[ej−1,ej)

ci = bj (1 6 j 6 J), ci = 0 (i > eJ). (5.2)
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For each j > 1, bj represents the number of cycles in the interval [ej−1, ej). By arguing just
as in the derivation of (4.4), we have∑

c1,...,ck>0
(5.2)

|Lm(c)|∏k
i=1 ci!i

ci
=

1∏
j bj!

∑
a∈D(b)

|L ∗
m(a)|

a1 · · · ar
,

(5.3)

where

D(b) =
J∏
j=1

[ej−1, ej)bj .

that is, the first b1 conponents of a ∈ D(b) are in [1, e) and are otherwise unordered, the
next b2 components of a ∈ D(b) are in [e, e2), etc. For fixed b ∈ ZJ>0 and s ∈ {1, . . . , r},
define js ∈ {1, . . . , J} by

b1 + · · ·+ bjs−1 < s 6 b1 + · · ·+ bjs ,

so that if a ∈ D(b), then as ∈ [ejs−1, ejs). Finally, let

λj =
∑

ej−16a<ej

1

a
= 1 +O(e−j) (j > 1).

Lemma 5.1. For any b = (b1, . . . , bJ) and p ∈ (1, 2] we have

∑
a∈D(b)

|L ∗
m(a)|

a1 · · · ar
>

mpr/(p−1)
∏J

j=1 λ
2bj
j(∑

P
(∑

Q S(P ,Q)
)p−1

) 1
p−1

,

where the sums run over all ordered partitions P = (P1, . . . , Pm) and Q = (Q1, . . . , Qm) of
{1, . . . , r}, and S(P ,Q) is the sum of 1/(a1 · · · ar) over all a ∈ D(b) such that

∑
s∈Pi as =∑

s∈Qi as for each i = 1, . . . ,m.

Proof. Given a ∈ Nr and x ∈ Zm>0, let R(a,x) be the number of partitions P such that xi =∑
s∈Pi as for each i = 1, . . . ,m. Then the support of R(a,x) is L ∗

m(a), and
∑

xR(a,x) = mr,
the total number of partitions P . Thus, Hölder’s inequality yields that

mr

J∏
j=1

λ
bj
j =

∑
a∈D(b)

∑
x∈L ∗m(a)

R(a,x)

a1 · · · ar

6

 ∑
a∈D(b)

|L ∗
m(a)|

a1 · · · ar

1−1/p ∑
a∈D(b)

∑
x

R(a,x)p

a1 · · · ar

1/p

. (5.4)

Meanwhile, ∑
x

R(a,x)p =
∑
x

R(a,x)p−1
∑
P

1xi=
∑
s∈Pi

as for i=1,...,m

=
∑
P

R
(
a,
(∑

s∈Pias
)
i

)p−1

,
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so by another application of Hölder’s inequality we have

∑
a∈D(b)

∑
x

R(a,x)p

a1 · · · ar
=
∑
P

∑
a∈D(b)

R
(
a,
(∑

s∈Pias
)
i

)p−1

a1 · · · ar

6
∑
P

 ∑
a∈D(b)

R
(
a,
(∑

s∈Pias
)
i

)
a1 · · · ar

p−1 ∑
a∈D(b)

1

a1 · · · ar

2−p

=
∑
P

(∑
Q

S(P ,Q)

)p−1 J∏
j=1

λ
bj(2−p)
j .

The lemma follows from this and (5.4). �

5.2. Bounding the low moment. Next, fix P and Q and consider S(P ,Q), the sum of
1/(a1 · · · ar) over all solutions a to the linear system∑

s∈Pi

as =
∑
s∈Qi

as, (i = 1, . . . ,m),

or, equivalently, ∑
s∈Pi\Qi

as −
∑

s∈Qi\Pi

as = 0, (i = 1, . . . ,m). (5.5)

In order to bound S(P ,Q) we will in effect upper-triangularize this system. This process
admits a convenient combinatorial description. Form a weighted graph G with vertices
{1, . . . ,m} by placing an edge between i1 and i2 whenever the equations in (5.5) indexed by
i1 and i2 have a variable in common, i.e., whenever

(Pi1 M Qi1) ∩ (Pi2 M Qi2) 6= ∅,
where A M B := (A∪B)\(A∩B) = (A\B)∪(B\A). Then we assign to the edge e = {i1, i2}
the label

se = max(Pi1 M Qi1) ∩ (Pi2 M Qi2)

and weight

we = jse .

Note that if Pi = Qi for some i, then the vertex labeled i is isolated in the graph G. Also,
note that the labels must be distinct, while the weights need not be. If In, 1 6 n 6 N , are
the components of G, we then find that Pi1 ∩ Qi2 = ∅ whenever i1 ∈ In1 and i2 ∈ In2 for
n1 6= n2. Consequently, ⋃

i∈In

Pi =
⋃
i∈In

Qi (1 6 n 6 N), (5.6)

so that the more components G has, the more relations we have between the partitions P
and Q.

For a subgraph H ⊂ G (a subset of the vertices and edges of G), we denote by A(H) the
set of labels occurring in H. We show in the next lemma that, given a subforest F ⊂ G
(that is to say, an acyclic subgraph of G or, equivalently, a disjoint union of subtrees of G),
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the variables (as)s∈A(F) are determined by (as)s/∈A(F) and (5.5). Moreover, the quality of the
bound implied for S(P ,Q) is measured by the total weight of F .

Lemma 5.2. If F is a subforest of G, then the variables (as)s∈A(F) are determined by
(as)s/∈A(F) and (5.5). Consequently,

S(P ,Q)�m e−
∑
s∈A(F) js

J∏
j=1

λ
bj
j .

Proof. Write A = A(F) for convenience. For the first part, first note that for any edge
e = {i1, i2} ∈ F , the variable ase appears in the equations

∑
s∈Pi\Qi as −

∑
s∈Qi\Pi as = 0 for

i = i1 and i = i2, and no others, since the sets P1, . . . , Pm are pairwise disjoint, and the same
is true for the sets Q1, . . . , Qm. Thus, if i is a leaf of F and e is the edge of F incident with
i, then, out of all the variables (as)s∈W , the equation∑

s∈Pi\Qi

as −
∑

s∈Qi\Pi

as = 0

involves only ase , so indeed ase is determined by (as)s/∈W and (5.5). Next, remove e from F
and continue inductively.

Now, since the variables (as)s∈A are determined by (as)s/∈A and (5.5), it follows that

S(P ,Q) =
∑

a∈D(b)
(5.5)

1

a1 · · · ar
6

∑
as∈[ejs−1,ejs )

(s/∈A)

1∏
s∈A e

js−1
∏

s/∈A as
=

1∏
s∈A e

js−1λjs

J∏
j=1

λ
bj
j

�m e−
∑
s∈A js

J∏
j=1

λ
bj
j . �

To apply Lemma 5.2 most profitably, we should choose a subforest F ⊂ G which maximizes
the total weight

W (F) :=
∑

s∈A(F)

js.

Such a F will necessarily be a spanning subforest, and thus have the same number of con-
nected components as G. See e.g. Figure 1.

Lemma 5.3.∑
P

(∑
Q

S(P ,Q)

)p−1

�m mr

(
J∏
j=1

λ
bj(p−1)
j

)(
1 +

J∑
j=1

(
m

p−1
m−1

)b1+···+bj
e−(p−1)j

)m−1

.

Proof. We will consider several graphs throughout the proof, but we fix for all time the
vertex set as {1, . . . ,m}.

Before we begin, we make some observations. Fix, for the moment, two partitions P and
Q, and consider the associated weighted graph G. As noted earlier, a F which is a heaviest
subforest is a spanning subforest of G. For any s, denote by Fs the subforest of F consisting
of all edges e ∈ F with se > s. We now show that there is a heaviest subforest F with the
following property: whenever s ∈ Pi ∩Qj, then i and j lie in the same component of Fs. To
see this, we separate three cases.
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Figure 1. A graph G and a heaviest subforest. Edge weights are indicated.

(a) If i = j, then the claim is trivially true. In particular, we note in this case that i is
an isolated vertex of G (and hence of Fs).

(b) If i 6= j and s ∈ A(F), then in fact {i, j} is an edge of Fs.
(c) Suppose that i 6= j and s /∈ A(F). As noted before, i and j must lie in the same

component of G, hence in the same component of F . There is a unique path from
i to j within F . If i and j do not lie in the same component of Fs, then this path
takes the form

i→ · · · → i′
s′→ j′ → · · · → j

with at least one label s′ < s and weight js′ . But then we can create another subforest
F ′ by removing the edge {i′, j′} from F (breaking the tree) and adding the edge {i, j}
(reconnecting the tree), whose label is > max(Pi ∩Qj) > s with substitute weight at
least js > js′ .

We are now ready to prove the lemma. Given an ordered partition P , a forest F with
N components, and a set of labels A = A(F) on the edges of F , write M(P ,F , A) for
the number of Q for which the associated graph G has a heaviest subforest F . The above
discussion implies that for each s ∈ {1, . . . , r}, the number of possibile j ∈ {1, . . . ,m} so that
s ∈ Qj is at most |Ists|, where Is1, . . . , IsNs denote the components of Fs and ts is defined by
s ∈ Pi and i ∈ Ists . It follows that

M(P ,F , A) 6
r∏
s=1

|Ists|.
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Together with Lemma 5.2 and the inequality (x + y)p−1 6 xp−1 + yp−1, which is true for
p ∈ [1, 2] and x, y > 0, we find that

∑
P

(∑
Q

S(P ,Q)

)p−1

�m

(
J∏
j=1

λ
bj(p−1)
j

)∑
P

(∑
F ,A

e−W (F)

r∏
s=1

|Ists |

)p−1

6

(
J∏
j=1

λ
bj(p−1)
j

)∑
F ,A

e−(p−1)W (F)
∑

16ts6Ns
16s6r

∑
(P1,...,Pm)

s∈Pi⇒ i∈Ists

r∏
s=1

|Ists|p−1

=

(
J∏
j=1

λ
bj(p−1)
j

)∑
F ,A

e−(p−1)W (F)
∑

16ts6Ns
16s6r

|I1t1|p · · · |Irtr |p

=

(
J∏
j=1

λ
bj(p−1)
j

)∑
F ,A

e−(p−1)W (F)

r∏
s=1

(|Is1|p + · · ·+ |IsNs|p).

Note that

max{xp1 + · · ·+ xpn : x1 + · · ·+ xn = m,x1, . . . , xn > 1} = (m− n+ 1)p + n− 1

for m > n: this follows from convexity of the function (x1, . . . , xn) 7→ xp1 + · · · + xpn, since
the maximum of a convex function in a simplex occurs at one of its vertices. Therefore∑

P
(∑

Q S(P ,Q)
)p−1∏J

j=1 λ
bj(p−1)
j

�m

∑
F ,A

e−(p−1)W (F)

r∏
s=1

((m−Ns + 1)p +Ns − 1).

Let f denote the number of edges in F , and write s1 < · · · < sf for the edge labels of F ,
which we know are distinct. We also write s0 = 0 and sf+1 = r for convenience. Recall that
N is the number of components of F , so that N1 = N . Since a tree of n vertices contains
exactly n− 1 edges, we must have that f = m−N .

Note that Ns = Nsi is constant when s ∈ (si−1, si], as well as that Nsi = min{m,Nsi−1
+1},

since the removal of one edge from Fsi−1
cuts one component into two pieces, creating exactly

one additional component in Fsi . Consequently, Nsi = N + i− 1 for i 6 f and Ns = m for
s > sf , so that

(m−Ns + 1)p +Ns − 1 =

{
(f − i+ 2)p +m− f + i− 2 if si−1 < s 6 si; i 6 f

m if sf < s 6 sf+1 = r.

There are Om(1) forests F , and Om(1) orderings of the edges within each forest. Therefore,∑
P
(∑

Q S(P ,Q)
)p−1∏J

j=1 λ
bj(p−1)
j

�m mr +
m−1∑
f=1

∑
16s1<···<sf6r

e−(p−1)
∑f
i=1 jsi

×
f∏
i=1

((f − i+ 2)p +m− f + i− 2)si−si−1 msf+1−sf ,
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with the summand mr corresponding to f = 0, that is to say the forest with no edges.
Lemma 3.7 in [Kou10] implies that

(`+ 1)p +m− `− 1 6 m
(
m

p−1
m−1

)`
(0 6 ` 6 m− 1),

provided that p is sufficiently close to 1 in terms of m, so that∑
P
(∑

Q S(P ,Q)
)p−1

mr
∏J

j=1 λ
bj(p−1)
j

�m 1 +
m−1∑
f=1

∑
16s1<···<sf6r

e−(p−1)(js1+···+jsf )
(
m

p−1
m−1

)s1+···+sf

6 1 +
m−1∑
f=1

(
r∑
s=1

e−(p−1)js
(
m

p−1
m−1

)s)f

,

by unordering the summands. Clearly, if the expression which we raise to the f -th power
is < 1, then the term 1 dominates; otherwise, the term with f = m − 1 dominates. In any
case, ∑

P
(∑

Q S(P ,Q)
)p−1

mr
∏J

j=1 λ
bj(p−1)
j

�m 1 +

(
r∑
s=1

e−(p−1)js
(
m

p−1
m−1

)s)m−1

.

In order to complete the proof, note that

r∑
s=1

e−(p−1)js
(
m

p−1
m−1

)s
=

J∑
j=1

e−(p−1)j
∑

b1+···+bj−1<s6b1+···+bj

(
m

p−1
m−1

)s
�

J∑
j=1

e−(p−1)j
(
m

p−1
m−1

)b1+···+bj
.

The claimed estimate then follows. �

By combining (4.2) and (5.3) with Lemmas 5.1 and (5.3), we have proved the following
proposition.

Proposition 5.4. If p ∈ (1, 2] is sufficiently close to 1 in terms of m, then

E|Lm(Xk)| �m
1

k

∑
b1,...,bJ>0

mr
∏J

j=1 λ
bj
j /bj!(

1 +
∑J

j=1

(
m

p−1
m−1

)b1+···+bj
e−(p−1)j

)m−1
p−1

.

Remark. The analysis given in this subsection differs technically from the corresponding
analysis in [Kou10]. First of all, the combinatorial language of trees and forests used to
describe the interdependencies in the relevant linear system is new, but even when both
arguments are cast in this language, there is a difference, related to how we analyze the
partitions giving rise to a particular heaviest subforest. The difference is parallel to that
between two of the best known algorithms for finding a minimal spanning tree, namely Prim’s
algorithm, which builds a tree by repeatedly adding the least expensive edge growing out
of the current tree, and Kruskal’s algorithm, which builds a forest by repeatedly adding the
least expensive edge which does not create a cycle. In [Kou10], the argument is more closely
related to Prim’s algorithm, while the argument here is more closely related to Kruskal’s
algorithm.
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5.3. Input from order statistics. Now fix r = m−1
logm

J +O(1), and let B = BC,C′ be the set

of all b = (b1, . . . , bJ) such that

(a) b1 + · · ·+ bJ = r;
(b) bj = 0 for every j 6 C;
(c) b1 + · · ·+ bj 6 Cj for every j 6 J ;
(d) we have the bound

J∑
j=1

(
m

p−1
m−1

)b1+···+bj
e−(p−1)j 6 C ′.

Here, C and C ′ are two integers which we will choose to be sufficiently large depending only
on m. In this case, Proposition 5.4 implies

E|Lm(Xk)| �m
mr

k

∑
b∈B

∏
j>C (1−O(e−j))

Cj

bC+1! · · · bJ !

�m
mr

k

∑
b∈B

1

bC+1! · · · bJ !
,

where the second inequality holds just because the product is convergent and we can choose
C sufficiently large.

Let R(b) be the set of all ξ ∈ [0, 1]r such that 0 6 ξ1 6 · · · 6 ξr < 1 and such that, for
each j ∈ {1, . . . , J − C}, exactly bj+C of the variables ξs are such that

j − 1

J − C
6 ξs <

j

J − C
.

Then∑
b∈B

1

bC+1! · · · bJ !
=
∑
b∈B

(J − C)rVol(R(b)) = (J − C)rVol(∪b∈BR(b)) > (J − C)rVol(Y ),

where Y is the set of all ξ ∈ [0, 1]r such that 0 6 ξ1 6 · · · 6 ξr < 1, ξs > (s−C2)/(CJ −C2)
for each s, and

e−1 +
r∑
s=1

(
m

p−1
m−1

)s
e−(p−1)(J−C)ξs 6 C ′(1− e1−p).

If C is large enough in terms of m, and then C ′ is sufficiently large in terms of C, p and m,
then [Kou10, Lemma 3.10] implies that

Vol(Y )� 1

r · r!
,

It follows from this and a short calculation using Stirling’s formula that

E|Lm(Xk)| �m
mr

k

Jr

r · r!
�m km−1−δm(log k)−3/2.

The lower bound in Theorem 1.4 is now a direct corollary of this estimate and of Proposi-
tion 3.1.
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6. Imprimitive transitive subgroups

In this section we use Theorem 1.4 to prove Theorem 1.2 by fleshing out the argument
outlined in Section 2. We will start with bounded ν and gradually treat larger and larger ν.
To bound I(n) we will then use the trivial bound

I(n) 6
∑
ν|n

1<ν<n

I(n, ν). (6.1)

6.1. Small ν. We did most of the work for the case in which ν is bounded already in
Section 2. We state the conclusion here.

Proposition 6.1. Let ν be a bounded divisor of n. Then

I(n, ν) �ν

{
n−δν (log n)−3/2 if 1 < ν 6 4,

n−1+1/(ν−1) if ν > 5.

Proof. This follows immediately from Lemma 2.2, Theorem 1.4, and Proposition 2.3. Specif-
ically, by Proposition 2.3 we know that

I(n, ν) �ν i(n, (din/ν)i, (di)i),

where

d =

{
(1, . . . , 1) if ν 6 4,

(ν − 1, 1) if ν > 5.

Theorem 1.4 provides an estimate for i(n, (din/ν)i, (di)i) for d = (1, . . . , 1), while Lemma 2.2
provides an estimate for i(n, (din/ν)i, (di)i) for d = (ν − 1, 1). �

6.2. Intermediate ν. For unbounded but not too large ν our goal is still to prove I(n, ν) �
n−1+1/(ν−1). As long as ν is less than log n, this is not the same as n−1, and as long as ν
is less than (log n)1/2, this is not the same as n−1+1/ν , so we must continue to give special
status to the partition (ν − 1, 1).

Proposition 6.2. Let ν be a divisor of n such that 1000 6 ν 6 n/ log2 n. Then

I(n, ν) � n−1+1/(ν−1).

Proof. The lower bound is immediate from Lemma 2.2:

I(n, ν) > i(n, ((ν − 1)n/ν, n/ν), (ν − 1, 1)) � n−1+1/(ν−1).

Thus it suffices to prove the upper bound.

Consider a partition (di) of ν into m parts, where d1 6 d2 6 · · · 6 dm. If m = 1,
we have i(n, (n), (ν)) � n−1+1/ν by Lemma 2.1(a). If m = 2, d1 = 1 and d2 = ν − 1 we
get i(n, ((ν − 1)n/ν, n/ν), (ν − 1, 1)) � n−1+1/(ν−1) as above. We will show that the sum
of all other terms i(n, (din/ν)i, (di)i) is O(n−1), which will prove the lemma. We will use
Lemma 2.1(b), together with Lemma 2.1(c) for the parts di > 2, and the main result of
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[EFG15b] for the parts di = 1, namely i(2n/ν, (n/ν, n/ν)) 6 (cn/ν)−δ2 for some absolute
constant c ∈ (0, 1]. Writing λ for the number of i < m such that di = 1, we find that

i(n, (din/ν)i, (di)i) 6

(
dmn

ν

)−1+1/dm
( ∏
i<m,di>2

(
din

ν

)−1+1/di
)(cn

ν

)−bλ/2cδ2
6
( n
m

)−1+m/ν
( ∏
i<m,di>2

(
din

ν

)−1+1/di
)(cn

ν

)−bλ/2cδ2
,

(6.2)

where we used the fact that dm > ν/m.

We also make use of the following estimate:∑
26d6D

1

(xd)1−1/d
� 1

x1/2
(x > log2D). (6.3)

This is easily proved by observing that the term d = 2 is 1/(2x)1/2, while the terms with
d > 2 contribute at most

maxd d
1/d

x

(
x1/3

∑
d6log x

1

d
+ e

∑
log x<d6D

1

d

)
� x1/3 log log x+ logD

x
� 1

x1/2
.

Now, we use the above discussion to estimate the total contribution of the remaining terms
i(n, (din/ν)i, (di)i). First, we deal with those terms that have m = 2. Relations (6.2) and
(6.3) imply that∑

26d16ν/2

i(n, (n− d1n/ν, d1n/ν), (d1, ν − d1)) 6
∑

26d16ν/2

(n/2)−1+2/ν

(
d1n

ν

)−1+1/d1

� n−1+2/ν
(n
ν

)−1/2

� 1

n log n

uniformly in ν.

Now consider the partitions with a fixed number m ∈ [3, ν] of parts. Applying again (6.2)
and (6.3), we get that∑

d16···6dm
d1+···+dm=ν

i(n, (din/ν), (di)) 6
( n
m

)−1+m/ν
m−1∑
λ=0

(cn
ν

)−bλ/2cδ2 ( ∑
26d6ν

(
dn

ν

)−1+1/d
)m−1−λ

6
( n
m

)−1+m/ν
m−1∑
λ=0

(cn
ν

)−bλ/2cδ2 (
O
(ν
n

))m−1−λ
2

�
( n
m

)−1+m/ν

eO(m)
(n
ν

)−m−2
2
δ2
.

This estimate suffices, and we simply need to analyze the right hand side, denoted Rm, in
different ranges of m and ν. When 3 6 m 6 40, Rm � n−1 uniformly in ν > 1000. When
40 6 m 6 ν/ log n (in particular, ν > 40 log n), nm/ν � 1 and Rm � n−1[O((n/ν)−δ2/2)]m−2.
Thus ∑

406m6ν/ logn

Rm � n−1
(n
ν

)−19δ2
� 1

n
.
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Finally, suppose m > max(40, ν/ log n). Then Rm � [O((n/ν)−δ2/2)]m−2. If ν < n1/4,
summing on m gives a total of

∑
mRm � (n/ν)−19δ2 � n−1.2. On the other hand, if

ν > n1/4, then m > n1/4/ log n, and we get
∑

mRm � n−100. �

6.3. Large ν. Our tools are not well adapted to the range n/ log2 n 6 ν < n, but fortunately
those of Diaconis, Fulman, and Guralnick [DFG08] are. The argument in this subsection is
related to [DFG08, Theorems 6.3 and 7.4], but involves a slightly more careful analysis.

We need a small lemma before continuing.

Lemma 6.3. The coefficient of zm in exp
(∑∞

k=1
zk

k2

)
is bounded by O(1/m2).

Proof. Write

h(z) = exp

(
∞∑
k=1

zk

k2

)
=

∞∑
m=0

cmz
m.

Clearly the coefficients of h(z) are bounded by those of

exp

(
∞∑
k=1

zk

k

)
=

1

1− z
=

∞∑
m=0

zm,

so at least we know cm 6 1. Moreover, the identity

h′(z) = h(z)
∞∑
k=1

zk−1

k

implies the recurrence

cm =
1

m

m∑
k=1

1

k
cm−k. (6.4)

Inserting the trivial bound cm−k 6 1, we deduce that

cm 6
1

m

m∑
k=1

1

k
� logm

m
.

Now, we can insert the bound cm−k � log(m− k)/(m− k) into (6.4) to find that

cm �
1

m

m∑
k=1

log(m− k)

k(m− k)
� (logm)2

m2
.

Using (6.4) one more time we obtain

cm �
1

m

m∑
k=1

log(m− k)2

k(m− k)2
� 1

m2
. �

Proposition 6.4. If ν is a divisor of n in the range n1/2 6 ν < n, then I(n, ν) � n−1+ν/n.

Proof. Set s = n/ν. The lower bound I(n, ν)� n−1+1/s follows trivially from the observation
that any permutation all of whose cycle lengths are divisible by s preserves a system of n/s
blocks of size s, so it suffices to prove the upper bound.
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By [DFG08, Theorem 6.3(1)], I(n, ν) is bounded by the coefficient of zν in

f(z) = exp

(
∞∑
k=1

zk

s!

1

k

(
1

k
+ 1

)(
1

k
+ 2

)
· · ·
(

1

k
+ s− 1

))
.

Consider for a moment the polynomial

p(x) =
1

(s− 1)!
(x+ 1)(x+ 2) · · · (x+ s− 1).

Clearly, p has nonnegative coefficients, p(0) = 1, and p(1) = s. In particular, p is a convex
function in [0, 1], and we deduce that

p(x) 6 1 + (s− 1)x 6 1 + sx (0 6 x 6 1).

Inserting x = 1/k, we find that

p(1/k) =
1

(s− 1)!

(
1

k
+ 1

)
· · ·
(

1

k
+ s− 1

)
6 1 +

s

k
.

Thus the coefficients of f(z) are bounded by those of

g(z) = exp

(
∞∑
k=1

zk

sk

(
1 +

s

k

))
= (1− z)−1/s exp

(
∞∑
k=1

zk

k2

)
.

Now, for m > 0, the coefficient of zm in (1− z)−1/s is

(−1)m
(
−1/s

m

)
=

1

m!

1

s

(
1

s
+ 1

)
· · ·
(

1

s
+m− 1

)
=

1

ms

m−1∏
j=1

(
1 +

1

js

)
� 1

m1−1/ss
,

(cf. the calculation in the proof of Lemma 2.1(a)), while the coefficient of z0 is of course

1. On the other hand, Lemma 6.3 implies that the coefficient of zm in exp
(∑∞

k=1
zk

k2

)
is

O(1/m2), so that

I(n, ν)�
ν−1∑
m=1

1

m1−1/ss

1

(ν −m)2
+

1

ν2

�
∑
m>ν/2

1

ν1−1/ss(ν −m)2
+
∑
m6ν/2

1

m1−1/ssν2
+

1

ν2

� 1

ν1−1/ss
+O

(
log ν

ν2−1/ss

)
+

1

ν2

� 1

n1−1/s
+
s2

n2
.

Since s 6 n1/2, this implies that I(n, ν)� n−1+1/s, as claimed. �

Theorem 1.2 follows immediately from Propositions 6.1, 6.2, and 6.4, the bound (6.1), and
the divisor bound, which states that the number of divisors ν of n is bounded by nO(1/ log logn).
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Remark 6.1. In general, some extra term in our estimate for I(n) is necessary; that is, it is
not always true that I(n) � I(n, p). Let p1, . . . , pk be the prime factors of n, and consider
the set of numbers m = pih with pi 6

√
n, h 6 1

2

√
n and (h, n) = 1. Such numbers are

clearly all distinct. Also, a permutation which is the product of an m-cyle and an (n−m)-
cycle partitions {1, . . . , n} into n/pi blocks of size pi. The number of such permutations is

n!
m(n−m)

> (n−1)!
m

, and so we get that

I(n) >
( ∑
pi6
√
n

1

pi

)( ∑
h6 1

2

√
n

(h,n)=1

1

h

)
1

n
.

Now take n = p1 · · · pk with log n < p1 < · · · < pk < 10 log n and k � logn
log logn

. The sum on pi
is � 1

log logn
and the sum on h is at least

∑
h6 1

2

√
n

1

h
−

k∑
i=1

∑
h6 1

2

√
n

pi|h

1

h
>
( ∑
h6 1

2

√
n

1

h

)(
1−

h∑
i=1

1

pi

)

=
( ∑
h6 1

2

√
n

1

h

)(
1−O

( 1

log log n

))
∼ log n

2
.

Also, by Theorem 1.2, I(n, p1) � n−1. Hence

I(n)� log n

log log n
n−1 � log n

log log n
I(n, p).

7. Primitive subgroups

We start by recalling the definition of wreath product. The reader may refer to [Rot95,
Chapter 7] for more details. Let D and Q be groups with Q acting on some set Ω. Then Q
acts on the set of functions DΩ via the operation2

q · (dω)ω∈Ω := (dq−1ω)ω∈Ω.

Then we define the wreath product of D and Q, denoted by D oQ, as the semidirect product
of DΩ and Q. More precisely, D oQ = DΩ ×Q equipped with the operation

((dω)ω∈Ω, q) · ((eω)ω∈Ω, r) := ((dωeq−1ω)ω∈Ω, qr).

If D also acts on some set, say Λ, then D oQ acts on ΛΩ via the operation

((dω)ω∈Ω, q) · (λω)ω∈Ω := (dωλq−1ω)ω∈Ω.

(There is also a natural action of D oQ on Λ×Ω, defined by ((dω)ω∈Ω, q) ·(λ, ω̃) := (dqω̃λ, qω̃),
but this action is generically imprimitive, so it will not concern us here.) Moreover, this action
is faithful if the actions of D on Λ and Q on Ω are so (and |Λ| > 2), in which case D oQ can
be realized as a subgroup of SΛΩ . In the special case when D = Sa, Q = Sb, Λ = {1, . . . , a}
and Ω = {1, . . . , b}, we find that Sa o Sb is a transitive subgroup of Sab .

2Note that there is a typo in the definition of this action in [Rot95].
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We need one last definition: given a nontrivial subgroup G of Sn, the minimal degree of G
is the smallest number of points moved by a nontrivial element of G. Obviously if 1 6= H 6 G
then the minimal degree of G is at most that of H.

We will combine the following two results.

Theorem 7.1 (Bovey [Bov80]). Let α ∈ (0, 1). If we choose π from Sn uniformly at random,
then the probability that π 6= 1 and 〈π〉 has minimal degree at least nα is 6 n−α+oα(1).

Theorem 7.2 (Liebeck–Saxl [LS91]). Let G be a primitive subgroup of Sn of minimal degree
less than n/3. Then there are positive integers m, k, r with m > 5 for which n =

(
m
k

)r
and

A×rm 6 G 6 Sm o Sr, where Sm acts on the k-sets of {1, . . . ,m} and Sm o Sr acts on r-tuples
of k-sets of {1, . . . ,m}.

In fact the constant 1/3 in this theorem can be improved to 3/7, and even to 1/2 with
explicit exceptions: see Guralnick and Magaard [GM98]. However we only need the following
corollary.

Corollary 7.3. Let G be a primitive subgroup of Sn of minimal degree at most n1−ε, and
assume that n is sufficiently large depending on ε. Then there are positive integers m, k, r
with k, r �ε 1 such that A×rm 6 G 6 Sm o Sr, with the action described in Theorem 7.2. In
particular, one of the following alternatives holds:

(i) G = Sn or An;
(ii) G 6 Sm, where Sm acts on k-sets of {1, . . . ,m}, n =

(
m
k

)
, and 1 < k �ε 1; or

(iii) G 6 Sm o Sr, where Sm o Sr acts on {1, . . . ,m}r, n = mr, and 1 < r �ε 1.

Proof. Let ∆ be the set of k-sets in {1, . . . ,m}. We must show that the minimal degree of
Sm o Sr acting on ∆r is at least n1−ε unless k, r �ε 1. Let g = (π1, . . . , πr;σ) ∈ Sm o Sr. We
note that an r-tuple (A1, . . . , Ar) ∈ ∆r is a fixed point of g if, and only if,

πj(Aσ−1(j)) = Aj (1 6 j 6 r). (7.1)

We separate two cases.

First, suppose that σ 6= 1. In particular, σ has a cycle of length s > 1, say (1 · · · s). We
then find that g respects the decomposition ∆r = ∆s ×∆r−s, and g has at most

(
m
k

)
fixed

points in its action on ∆s: if we know A1 and π1, . . . , πs, then A2, . . . , As are determined by
the relations (7.1). Thus g has at most(

m

k

)(
m

k

)r−s
6

(
m

k

)r−1

(7.2)

fixed points in its action on ∆r.

On the other hand if σ = 1, then g fixes the point (A1, . . . , Ar) ∈ ∆r if and only if πi
fixes Ai for each i. Clearly then the greatest number of points are fixed by an element of the
form (π1, 1, . . . , 1) with π1 6= 1. Find x ∈ {1, . . . ,m} such that π1(x) 6= x. Consequently, if
π1 fixes A, then either x, π1(x) ∈ A or x, π1(x) /∈ A. We thus find that the number of fixed
points of g acting on ∆r is at most((

m− 2

k

)
+

(
m− 2

k − 2

))(
m

k

)r−1

,
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and, as a matter of fact, exactly that if π1 is a transposition. By comparing with (7.2), we
see that the greatest number of points are fixed by a transposition in one coordinate in the
base, so the minimal degree of Sm o Sr acting on ∆r is(

m

k

)r
−
((

m− 2

k

)
+

(
m− 2

k − 2

))(
m

k

)r−1

=
2k(m− k)

m(m− 1)

(
m

k

)r
>

2

m− 1

(
m

k

)r
.

This is at least
(
m
k

)r(1−ε)
unless k, r �ε 1.

The last part of the corollary follows by assigning the case k = r = 1 to (i), the case
k > 1, r = 1 to (ii), and the case r > 1 to (iii). In the last case we must replace m by
m′ =

(
m
k

)
. �

We need a couple lemmas to help rule out cases (ii) and (iii) of Corollary 7.3.

Lemma 7.4. If k > 2 then every π ∈ Sm \ {1} has �k m
1/2 cycles in its action on the set

of k-sets of {1, . . . ,m}.

Proof. Write Ω for {1, . . . ,m} and
(

Ω
k

)
for the set of k-sets of Ω. Either there are at least

m1/2 disjoint cycles in Ω, or there is a cycle of length at least m1/2. In the former case we
get at least one cycle in

(
Ω
k

)
for each choice of k distinct cycles in Ω, so there are at least(⌊

m1/2
⌋

k

)
�k mk/2 > m1/2

cycles in
(

Ω
k

)
. In the latter case, fix a cycle C in Ω of length at least m1/2. There are

(|C|
k

)
k-sets contained in C, and each cycle in

(
C
k

)
has length at most |C|, so there are at least

1

|C|

(
|C|
k

)
�k |C|k−1 > m1/2

cycles in
(
C
k

)
. �

Lemma 7.5. If r > 2, then every g ∈ Sm o Sr which is nontrivial in the Sr factor has at
least m/r cycles in its action on {1, . . . ,m}r.

Proof. Let g = (π1, . . . , πr;σ), where σ 6= 1. Suppose (1 · · · s) is a cycle of σ, where s > 1.
Then g acts on {1, . . . ,m}s, and gs (the s-th power of g) acts on Sm o Ss as

(π1π2 · · · πs−1πs, π2π3 · · · πsπ1, . . . , πsπ1 · · · πs−2πs−1; 1).

The coordinates appearing here are conjugate to one another, so they have the same number
of cycles of each length i, say ci. But if x1, . . . , xs are each contained in cycles of length i, then
(x1, . . . , xs) is contained in a cycle of length i, so the number of cycles of gs in {1, . . . ,m}s
of length i is at least

(ici)
s

i
> ici.

The total number of cycles of gs in {1, . . . ,m}s is thus at least
m∑
i=1

ici = m.

Thus g itself has at least m/s cycles in {1, . . . ,m}s, and in particular at least m/s > m/r
cycles in {1, . . . ,m}r. �
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Proof of Theorem 1.3. Choose π ∈ Sn uniformly at random. By Theorem 7.1 the probability
that 〈π〉 has minimal degree greater than n1−ε is Oε(n

−1+2ε), so we may assume that 〈π〉 has
minimal degree at most n1−ε. Thus, if π ∈ G and G is primitive, then G also has minimal
degree at most n1−ε. Consequently, if n is large enough depending on ε, then G must fall
into one of the cases of Corollary 7.3. We must rule out cases (ii) and (iii).

Since the number of cycles of a random permutation is approximately Poisson with mean
O(log n), we know that all but at most a proportion O(n−100) of π ∈ Sn have at most (log n)2

cycles: see for example [EFG15a, Lemma 2.2]. Thus, by Lemma 7.4 we may ignore case (ii).
The last case we need to consider is when we can identity π with an element (π1, . . . , πr;σ) of
Sm oSr, acting on {1, . . . ,m}r. Lemma 7.5 then allows us to assume that σ = 1. In this case,
though, we find that π preserves a system of m = n1/r blocks of size n1−1/r, the blocks being
the sets Ba = {(a, a2, . . . , ar) : 1 6 a2, . . . , ar 6 m}, for 1 6 a 6 m. Therefore, Theorem 1.2
implies that the proportion of such π ∈ Sn is bounded by

Oε(1)∑
r=2

I(n, n1/r)�ε n
−1. �
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