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Kevin B. Ford

1. Introduction

Let
f(x) = akx

k + ak−1x
k−1 + · · ·+ a1x

be a polynomial with integer coefficients, P a natural number, and let F (α) be the
Weyl sum associated with f , defined by

(1.1) F (α) =

P∑
x=1

e(αf(x)),

where e(z) = e2πiz. In this note we develop a new method of estimating the mean
values

Is(P ) =

∫ 1

0

|F (α)|2sdα,

which have applications to Waring’s problem. Observe that Is(P ) is the number of
solutions of

s∑
i=1

(f(xi)− f(yi)) = 0

with 1 6 xi, yi 6 P . If Is(P ;n) denotes the number of solutions of

s∑
i=1

(f(xi)− f(yi)) = n

with 1 6 xi, yi 6 P , then

(1.2) Is(P ;n) =

∫ 1

0

|F (α)|2se(−nα)dα 6 Is(P ).

Similar inequalities hold for general diophantine equations (or systems of equa-
tions) of this type, and we shall refer to this by saying that the zero representation
dominates. From (1.2) we obtain

P 2s =
∑
n

Is(P ;n)� P kIs(P ),
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whence Is(P )� P 2s−k, and it is conjectured that this represents the true order of
magnitude of Is(P ) when s > k > 3. We write bounds for Is(P ) in the form

(1.3) Is(P )� P 2s−k+∆(s,k),

and are primarily concerned with the rate at which ∆(s, k)→ 0 as s becomes large.
There are only two known methods for bounding these mean values, both dating

from the 1930’s. In 1938, Hua [Hu38] used a Weyl-type differencing argument to
show that when 1 6 j 6 k,

(1.4) I2j−1(P )� P 2j−j+ε.

Recently, Heath-Brown [HB] has refined Hua’s technique when f(x) = xk, j = k
and k > 6, obtaining

(1.5) I7·2k−4(P )� P 7·2k−3−k+ε.

The second method depends on estimates of the integral

Js,k(P ;n) =

∫
[0,1]k

∣∣∣∣∣
P∑
x=1

e(α1x+ · · ·+ αkx
k)

∣∣∣∣∣
2s

e(−n1α1 − · · · − nkαk)dα,

first studied by Vinogradov in the mid-1930’s. Clearly Js,k(P ;n) 6 Js,k(P ;0) =:
Js,k(P ). Since Js,k(P ;n) is the number of solutions to the simultaneous diophantine
equations

s∑
i=1

(xji − y
j
i ) = nj (1 6 j 6 k)

with 1 6 xi, yi 6 P , we have

P 2s =
∑
n

Js,k(P ;n)� P k(k+1)/2Js,k(P ),

or Js,k(P ) � P 2s−k(k+1)/2. Nontrivial upper bounds for Js,k(P ) are now known
collectively as Vinogradov’s mean value theorem and take the form

(1.6) Js,k(P )� P 2s−k(k+1)/2+η(s,k).

In what follows, we suppose that (1.6) holds for each pair (s, k) and take this as
the “definition” of η(s, k). We have

Is(P ) =
∑

a1n1+···+aknk=0

Js,k(P ;n)

� P k(k−1)/2Js,k(P )

� P 2s−k+η(s,k),

(1.7)

i.e., (1.3) holds with ∆(s, k) = η(s, k). This represents a vast improvement over
Hua’s inequality for large k, since modern bounds for Js,k(P ) have η(s, k) very close
to zero when s is of order k2 log k.

We develop a more sophisticated method of bounding Is(P ) in terms of bounds
(1.6) which reduces ∆(s, k) roughly by a factor of k. More precisely, we have
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Theorem 1. Let m be an integer with 1 6 m 6 k. Then

Is(P )� P 2s−k+ 1
mη(s−m(m−1)/2,k).

Taking η(s, k) ≈ k2e−2s/k2 [Wo92b], the optimal choice for m is about k/
√

2,
and we then have approximately

Is(P )� P 2s−k+
√

2e
k η(s,k).

Let G̃(k) be the smallest integer t such that for all s > t and all sufficiently large
natural numbers n, we have the asymptotic formula in Waring’s problem, that is,

card{x ∈ Ns : n = xk1 + · · ·+ xks} = (Ss,k(n) + o(1))
(Γ(1 + 1/k))s

Γ(s/k)
ns/k−1,

where Ss,k(n) denotes the usual singular series in Waring’s problem (see [Va81,

§2.6]). Roughly speaking, we have G̃(k) 6 2s, where s is the smallest integer for

which ∆(s, k) is very small (say < 1/ log k). Hua’s inequality implies G̃(k) 6 2k+1,
and this was the best known bound for small k until recently. Vaughan [Va86a,b]

showed that G̃(k) 6 2k, and Heath-Brown [HB] and Boklan [Bo] used (1.5) to

establish G̃(k) 6 7 · 2k−3 for k > 6.
For large k, the best bounds all derive from (1.7). In a series of papers in the

1930’s and 1940’s, Vinogradov, Hua and others refined estimates for Js,k(P ), leading

to G̃(k) 6 (4+o(1))k2 log k, proved by Hua [Hu49] in 1949. Until recently, only the
o(1) term has been improved. Using an “efficient differencing” technique, Wooley

[Wo92b] obtained superior bounds for Js,k(P ) which give G̃(k) 6 (2+o(1))k2 log k.
Combining Theorem 1 with Wooley’s bounds for Js,k(P ) produces the following
improvement.

Corollary 1.1. We have G̃(k) 6 k2(log k + log log k +O(1)) as k →∞.

In fact, upper bounds for G̃(k) are improved for all k > 9, and we record below
the bounds attainable from Theorem 1 for 9 6 k 6 20.

Corollary 1.2. We have G̃(9) 6 393, G̃(10) 6 551, G̃(11) 6 717, G̃(12) 6 874,

G̃(13) 6 1050, G̃(14) 6 1233, G̃(15) 6 1434, G̃(16) 6 1647, G̃(17) 6 1881,

G̃(18) 6 2137, G̃(19) 6 2412, G̃(20) 6 2703.

These bounds may be compared with the bounds G̃(9) 6 448 (Boklan [Bo]),

and G̃(10) 6 750, G̃(11) 6 975, G̃(12) 6 1200, G̃(13) 6 1450, G̃(14) 6 1725,

G̃(15) 6 2026, G̃(16) 6 2354, G̃(17) 6 2708, G̃(18) 6 3089, G̃(19) 6 3497, G̃(20) 6
3932 (Wooley [Wo92b]).

Any bounds for Is(P ) which depend upon Vinogradov’s mean value theorem are
in a sense unsatisfactory, since the best possible upper bounds for Js,k(P ) only

imply G̃(k)� k2 (using (1.7) or Theorem 1), and it is likely that G̃(k)� k.
The author wishes to thank Professor Bombieri for showing the author the ar-

gument sketched in the next section and Professor T. D. Wooley for supplying
Lemma 3.1. The work for this paper was completed while the author was enjoying
the hospitality of the Institute For Advanced Study, supported by NSF grant DMS
9304580.
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2. A first iterative approach

When f(x) = xk and the range of x in (1.1) is restricted to so-called “smooth”
numbers, Vaughan [Va89] has developed an iterative process for a single equation
which is similar to the iteration used for a system of equations to prove Vinogradov’s
mean value theorem (see also [Wo92a]). The next lemma, from unpublished notes
by Bombieri in 1974, represents a simple idea on how to create such an iterative
process for classical Weyl sums for arbitrary polynomials f . It is included here only
as a motivation for the more sophisticated method we will actually follow.

Lemma 2.1. If k > 3, then

Is(P )� P 2s−k+∆(s,k),

where

∆(s, k) =
k − 1

2
−
(

1

2
+

1

3
+ · · ·+ 1

k

)
+
η(s− k + 1, k)

k
.

This is stronger than both (1.4) and (1.7) for k log k � s 6 ( 1
2 + o(1))k2 log k.

However, as η(s, k) → 0,∆(s, k) → k
2 − log k + O(1), which is much too large for

the application to Waring’s problem.

Proof sketch. For simplicity, assume that f (h)(x) is irreducible over Q for 1 6 h 6
k− 2. The proof for general f follows the method given in the proof of Lemma 4.1
below. Let p1, . . . , pk−1 be primes with sP 1/r(r+1) 6 pr 6 2sP 1/r(r+1), such that

the congruence
∏k−2
h=1 f

(h)(x) ≡ 0 (mod pr) is insoluble. Let q0 = 1, qm = p1 · · · pm,
and let Is(P ; q, b) denote the number of solutions of

(2.1)

s∑
i=1

(f(qxi + b)− f(qyi + b)) = 0,

with 0 6 xi, yi 6 P/q. Our goal is to prove

(2.2) Is(P ; qm−1, b)� p2s+m−1
m

pm−1∑
a=0

Is−1(P ; qm, b+ aqm−1).

Writing f(qm−1x + b) =
∑
f (h)(b)(qm−1x)h/h!, it follows from (2.1) that qm−1

divides

f ′(b)
s∑
i=1

(xi − yi).

Suppose m > 2, so that qm−1 > sP 1/2. Note also that (qm−1, f
′(b)) = 1. Because

of the reduced ranges of xi, yi, we have∣∣∣∣∣
s∑
i=1

(xi − yi)

∣∣∣∣∣ 6 sP/qm−1 < qm−1,

and it follows that
s∑
i=1

(xi − yi) = 0.



NEW ESTIMATES FOR MEAN VALUES OF WEYL SUMS 5

When m 6 k − 1, we similarly obtain

(2.3)

s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 m− 1),

using the relations qm−1 > sP 1−1/m and (f (h)(b), qm−1) = 1 for 1 6 h 6 m −
1. When m = k, (2.3) holds as well, except when (f (k−1)(b), qk−1) > 1. These
exceptional b can be safely ignored by employing the method given in the proof of
Lemma 4.1. For the remaining b, we then have

(2.4) Is(P ; qk−1, b) 6 Js,k(P 1/k),

and this terminates the iteration.
When m < k, we separate off the variables x1, y1 and divide the remaining

variables into residue classes modulo pm. Using Hölder’s inequality to align the
residue classes yields

Is(P ; qm−1, b)� p2s−3
m

pm−1∑
a=0

S(p, a),

where S(P, a) is the number of solutions of the system

s−1∑
i=1

(f(qmui + b′)− f(qmvi + b′)) = f(qm−1x+ b)− f(qm−1y + b)

s−1∑
i=1

((pmui + a)j − (pmvi + a)j) = xj − yj (1 6 j 6 m− 1)

with 0 6 x, y 6 P/qm−1, 0 6 ui, vi 6 P/qm and b′ = b + aqm−1. Utilizing the
additional equations, one can show that

(2.5) f(qm−1x+ b)− f(qm−1y + b) ≡ 0 (mod pmm),

and so the number of possible pairs (x, y) is � p−mm (P/qm−1)2. Since the zero
representation dominates, for each pair (x, y) the number of (u,v) is bounded by
Is−1,m(P ; qm, b

′). Inequality (2.2) now follows from the fact that P/qm−1 � pm+1
m ,

and the lemma follows by iterating (2.2) and applying (2.4) when m = k.

3. Preliminaries

To avoid certain technical complications, we assume that the coefficients aj are
positive. If not, replacing f(x) by f(x+ c) for some natural number c will result in
a polynomial with all coefficients positive. The effect on the mean value estimates
is negligible, for if

F ∗(α) =

P∑
x=1

e(αf(x+ c)),

then ∫ 1

0

|F (α)|2sdα�
∫ 1

0

|F ∗(α)|2sdα+

∫ 1

0

c2sdα�
∫ 1

0

|F ∗(α)|2sdα.



6 KEVIN B. FORD

Our improvement to the argument in the preceding section involves a more
efficient use of the additional equations (2.3) which arise when qm becomes large.
Instead of separating only x1 and y1, we separate x1, . . . , xm and y1, . . . , ym and
proceed in a manner analogous to the iteration used to bound Js,m(P ) (see [Va81,
§5.1]). This leads to a system of congruences in these 2m variables modulo powers
of pm in place of the single congruence (2.5). The number of solutions of this system
is estimated by the following generalization of a result due to Linnik [Li, Lemma
1].

Lemma 3.1[Wo95]. Let f1, . . . , fd be polynomials in Z[x1, . . . , xd] with respective
degrees k1, . . . , kd, and write

J(f ;x) = det

(
∂fj(x)

∂xi

)
16i,j6d

.

Also, let p be a prime number and s be a natural number. Then the number, N , of
solutions of the simultaneous congruences

fj(x1, . . . , xd) ≡ 0 (mod ps) (1 6 j 6 d)

with 1 6 xi 6 ps (1 6 i 6 d) and (J(f ;x), p) = 1, satisfies N 6 k1 · · · kd.

The next lemma gives an explicit form for the Jacobians of the functions we will
need to prove Theorem 1.

Lemma 3.1. Suppose h > m, fj(x) = xj1 + · · · + xjm for 1 6 j 6 m − 1, and
fm(x) = xh1 + · · ·+ xhm. Then in the notation of Lemma 3.1,

J(f ;x) = h(m− 1)!Kh,m(x)
∏
i<j

(xi − xj),

where Kh,m(x) is the sum of all monomials in x1, . . . , xm of total degree h−m.

Proof. The conclusion is obvious when m = 2, and when h = m the determinant
is the Vandermonde determinant, so the lemma follows in this case as well (with
Kh,m(x) = 1). Now suppose h > m > 2 and let Jh,m(x) = J(f ;x)/(h(m − 1)!).
Subtracting the i = m column from each of the other columns and taking out
common factors gives

Jh,m(x) = (x1 − xm) · · · (xm−1 − xm) det(gij),

where 1 6 i 6 m− 1, j ∈ {1, 2, . . . ,m− 2, h− 1}, and gij = (xji − xjm)/(xi − xm).
Expanding the terms in the j = h − 1 row and using elementary row operations,
we have

det(gij) =
h∑

d=m

xh−dm Jd−1,m−1(x1, . . . , xm−1).

The lemma now follows from the identity

Kh,m(x1, . . . , xm) =
h∑

d=m

xh−dm Kd−1,m−1(x1, . . . , xm−1)
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by double induction on h and m.

For 1 6 m 6 k − 1, let Jm(x; q, b) denote the Jacobian of the functions

fj(x) = xj1 + · · · + xjm (1 6 j 6 m − 1) and fm(x) =
∑m
i=1 f(qxi + b). By

Lemma 3.1, we have

(3.1) Jm(x; q, b) = (m− 1)!Fm(x; q, b)
∏

16i<j6m

(xi − xj),

where

(3.2) Fm(x; q, b) =

k∑
h=m

hqh
k∑
i=h

ai

(
i

h

)
bi−hKh,m(x).

Let P be a large integer, and for 1 6 r 6 k− 1, let Pr denote the 2sk4 smallest
primes greater than sP 1/(r(r+1)). If P is sufficiently large, p < 2sP 1/(r(r+1)) for
each p ∈Pr. For m > 1, let Is,m(P ; q, b) denote the number of solutions of

(3.3)



s∑
i=1

(f(qxi + b)− f(qyi + b)) = 0

s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 m− 1)

with 0 6 xi, yi 6 P/q. In particular, Is(P ) 6 Is,1(P ; 1, 0). In mean value form,

Is,m(P ; q, b) =

∫
[0,1]m

|F (α)|2sdα,

where

F (α) =
∑

06x6P/q

e(α1x+ · · ·+ αm−1x
m−1 + αmf(qx+ b)).

4. Improved iteration procedure

We are now ready to construct the iteration which leads to Theorem 1. The
proof of this lemma is similar in structure to the proof of a bound for Js,k(P ) given
in [Wo93b].

Lemma 4.1. Suppose k > 3, 1 6 m 6 k − 1, s > m and q = p1 · · · pm−1, where
each pi ∈ Pi (if m = 1 suppose q = 1). Also suppose b is a number satisfying
0 6 b < q and (f (j)(b), q) = 1 for 1 6 j 6 k − 1. Then

Is,m(P ; q, b)� max
p∈Pm

p2s−2m+ 3
2m(m+1) max

a∈B(p)
Is−m,m+1(P ; pq, b+ aq),

where B(p) = B(p; q, b) denotes the set of a with 0 6 a < p and (f (j)(b+aq), pq) = 1
for 1 6 j 6 k − 1.
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Proof. For eachm-tuple h = (h1, . . . , hm), letR1(h) denote the number of solutions
of

(4.1)



s∑
i=1

f(qxi + b) = hm

s∑
i=1

xji = hj (1 6 j 6 m− 1)

with 0 6 xi 6 P/q and x1, . . . , xm distinct, and let R2(h) denote the corresponding
number of solutions with x1, . . . , xm not distinct. Then

Is,m(P ; q, b) =
∑
h

(R1(h) +R2(h))2 6 2(S1 + S2),

where Si =
∑

hRi(h)2 (i = 1, 2).
Suppose S2 > S1, so that Is,m(P ; q, b) 6 4S2. Then by considering the underly-

ing diophantine equations and noting that R2(h) is at most
(
m
2

)
times the number

of solutions of (4.1) with x1 = x2, we have by Hölder’s inequality,

Is,m(P ; q, b) 6 m4

∫
[0,1]m

|F (α)2s−4F (2α)2|dα

6 m4

(∫
[0,1]m

|F (α)|2sdα

)1−2/s(∫
[0,1]m

|F (2α)|2sdα

)1/s

= m4(Is,m(P ; q, b))1−1/s,

whence Is,m(P ; q, b)� 1. On the other hand, the number of solutions of (3.3) with
xi = yi for each i is > (P/q)s. Therefore S1 > S2 and Is,m(P ; q, b) 6 4S1.

Note that S1 is the number of solutions counted in Is,m(P ; q, b) with x1, . . . , xm
distinct and likewise for y1, . . . , ym. Let

(4.2) H(x1, . . . , xs) = Jm(x1, . . . , xm; q, b)
∏

m+16i6s
16j6k−1

f (j)(qxi + b).

By (3.1),(3.2) and the fact that all of the aj are positive, for a solution (x,y)
counted in S1, we have

0 < |H(x)H(y)| � Pm(m−1)+2k+sk2 < P 2sk2

if P is sufficiently large. There is some prime p ∈ Pm which does not divide

H(x)H(y), for otherwise |H(x)H(y)| > P 2sk4/(m(m+1)) > P 2sk2 . It follows that
S1 6

∑
p∈Pm

S1(p), where S1(p) denotes the number of solutions of (3.3) with

p - H(x)H(y). For a fixed prime p, let

F (α, a) =
∑

06x6P/q
x≡a (mod p)

e(α1x+ · · ·+ αm−1x
m−1 + αmf(qx+ b)).
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Let A denote the m-tuples a = (a1, . . . , am) with 0 6 ai < p and p - Jm(a; q, b).
For 1 6 j 6 k − 1, (f (j)(qx + b), q) = (f (j)(b), q) = 1 and x ≡ a (mod p) implies
f (j)(qx+ b) ≡ f (j)(b+ aq) (mod p). Thus by (4.2),

S1(p) =

∫
[0,1]m

∣∣∣∣∣∣
∑

a∈B(p)

F (α, a)

∣∣∣∣∣∣
2s−2m ∣∣∣∣∣∑

a∈A

F (α, a1) · · ·F (α, am)

∣∣∣∣∣
2

dα.

By Hölder’s inequality,∣∣∣∣∣∣
∑

a∈B(p)

F (α, a)

∣∣∣∣∣∣
2s−2m

6 p2s−2m−1
∑

a∈B(p)

|F (α, a)|2s−2m,

and hence

(4.3) S1(p) 6 p2s−2m max
a∈B(p)

S3(p, a),

where S3(p, a) denotes the number of solutions of

m∑
i=1

(f(qxi + b)− f(qyi + b)) =
s−m∑
i=1

(f(pqui + b+ aq)− f(pqvi + b+ aq))

m∑
i=1

xji − y
j
i =

s−m∑
i=1

(pui + a)j − (pvi + a)j (1 6 j 6 m− 1)

with 0 6 xi, yi 6 P/q, p - Jm(x; q, b)Jm(y; q, b), and 0 6 ui, vi 6 P/(qp). In the
above system, we expand the functions in the top equation in a Taylor series about
the point b + aq, and apply the binomial theorem to the remaining equations. If
dh = f (h)(b+ aq)qh/h!, then S3(p, a) is the number of solutions of

(4.4)



k∑
h=1

dh

m∑
i=1

((xi − a)h − (yi − a)h) =
k∑
h=1

dhp
h
s−m∑
i=1

(uhi − vhi )

m∑
i=1

((xi − a)j − (yi − a)j) = pj
s−m∑
i=1

(uji − v
j
i ) (1 6 j 6 m− 1)

with the same conditions on x,y,u,v. Let T (p, a) denote the number of (x,y) for
which (4.4) is satisfied for some (u,v). Since the zero representation dominates, we
have

(4.5) S3(p, a) 6 T (p, a)Is−m,m(P ; qp, b+ aq).

In the top equation of (4.4), the terms with 1 6 h 6 m− 1 cancel, so

(4.6)
k∑

h=m

dh

m∑
i=1

((xi − a)h − (yi − a)h) ≡ 0 (mod pm).
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Since P/q < pm+1, the number of possibilities for y1, . . . , ym is at most pm(m+1).
By (4.4) and (4.6) we deduce that

T (p, a) 6 pm(m+1) max
c
V (c),

where V (c) is the number of solutions of the simultaneous congruences

k∑
h=m

dh

m∑
i=1

(xi − a)h ≡ cm (mod pm)

m∑
i=1

(xi − a)j ≡ cj (mod pj) (1 6 j 6 m− 1)

with 0 6 xi < pm+1 and p - Jm(x; q, b). For a given c, there are at most pm(m+1)/2

possibilities modulo pm+1 for the right sides of these congruences. We now reverse
course, extending the sum on h in the top congruence down to h = 0 and applying
the binomial theorem to the lower m− 1 congruences. It follows that

max
c
V (c) 6 pm(m+1)/2 max

c
W (c),

where W (c) is the number of solutions of

m∑
i=1

f(qxi + b) ≡ cm (mod pm+1)

m∑
i=1

xji ≡ cj (mod pm+1) (1 6 j 6 m− 1)

with 0 6 xi < pm+1 and p - Jm(x; q, b). Lemma 3.1 implies W (c) 6 k(m − 1)! for
every c, and thus

T (p, a)� p
3
2m(m+1).

By (4.3) and (4.5), the lemma will follow upon showing

Is−m,m(P ; qp, b+ aq) = Is−m,m+1(P ; qp, b+ aq)

when a ∈ B(p). That is, we must show that every solution (x,y) counted in
Is−m,m(P ; qp; b+ aq) satisfies

(4.7) Xm :=
s−m∑
i=1

(xmi − ymi ) = 0.

By (3.3),
k∑

h=m

dhp
h
s−m∑
i=1

(xhi − yhi ) = 0.

Thus, pq divides f (m)(b+aq)Xm, and by the definition of B(p), (f (m)(b+aq), pq) =
1. Equation (4.7) now follows since |Xm| 6 s(P/qp)m < qp.

The next lemma provides a simple method of transitioning to Vinogradov’s mean
value theorem at any stage of the iteration.



NEW ESTIMATES FOR MEAN VALUES OF WEYL SUMS 11

Lemma 4.1. If 1 6 m 6 k, q 6 (sPm)1/(m+1) and (f (j)(b), q) = 1 (1 6 j 6 k−1),
then

Is,m(P ; q, b)�
k−1∏
j=m

1

q

(
P

q

)j
Js,k(P/q).

Proof. When m = k, the equations (3.3) imply

s∑
i=1

(xki − yki ) = 0,

and thus
Is,k(P ; q, b)� Js,k(P/q).

The variables xi, yi start at 1 in the definition of Js,k(P ), which explains why the
above is not a strict inequality. Now suppose m 6 k − 1. The system (3.3), plus
the conditions on b, imply that

(4.8)
s∑
i=1

(xmi − ymi ) ≡ 0 (mod q).

On the other hand, ∣∣∣∣∣
s∑
i=1

(xmi − ymi )

∣∣∣∣∣ 6 s(P/q)m.

There are thus at most s(P/q)mq−1 possible values for the sum in (4.8). Since the
zero representation dominates,we have

Is,m(P ; q, b) 6
s

q

(
P

q

)m
Is,m+1(P ; q, b),

and the lemma follows by induction on m.

If b and q satisfy the conditions of Lemma 4.1, then

Is− 1
2m(m−1),m(P ; q, b)� P

2s
m(m+1)

+ 1
2 max
p∈Pm

max
a∈B(p)

Is− 1
2m(m+1),m+1(P ; pq; b+ aq).

Iterating this expression, starting with m = 1 and terminating with Lemma 4.1 at
m = r gives

Is(P )� P 2s(1− 1
r )+ r−1

2 +
∑k−1

j=r ( j−1
r −1)Js− 1

2 r(r−1),k(P 1/r)

� P 2s−k+ 1
r η(s− 1

2 r(r−1),k),

and Theorem 1 is proved.
We conclude this section by mentioning that Lemma 4.1 may be generalized

in the following manner. In the estimation of Is,m, we choose a parameter h,
1 6 h 6 m and separate the variables x1, . . . , xh, y1, . . . , yh to the left side of the
equations defining S3(p, a). Thus, taking h = m yields Lemma 4.1 and taking h = 1
at each stage gives Lemma 2.1. This generalization does lead to improvements in
bounds for Is(P ) for values of s smaller than those required for Waring’s problem,
but the author has yet to find an application for these bounds.
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5. The asymptotic formula in Waring’s problem

The methods of bounding G̃(k) using estimates for Is(P ) are well known, and
we refer the reader to Chapters 4 and 5 of [Va81]. We first require upper bound
estimates for Vinogradov’s integral as well as minor arc bounds for Weyl sums. The
next lemma, a simplified version of Theorem 1.1 of [Wo92b], gives an upper bound
for Js+k,k(P ) given a bound for Js,k(P ).

Lemma 5.1 (Wooley). Suppose Js,k(P )� P 2s−k(k+1)/2+η and 1
2 (j−1)(j−2) 6

η. Let φj = 1/k and for J = j, . . . , 2 set

φJ−1 =
k + (k2 + 1

2 (J − 1)(J − 2)− η)φJ

2k2
.

If φ = φ1, then

Js+k,k(P )� P 2(s+k)−k(k+1)/2+η(1−φ)+k(kφ−1).

Lemma 5.1. If k is sufficiently large, and 1 6 r 6 k(log k − log log k), then (1.6)
holds with

η(rk, k) = k2e−2r/k.

Proof. This follows by combining the estimation techniques of [Wo92b, §5] and
[Wo93a, §2]. Let δ(1) = 1

2 (1 − 1/k) and define δ(r) iteratively as follows. If

δ(r − 1) < (log k/k)2 then set δ(r) = δ(r − 1). Otherwise apply Lemma 5.1 with

j = [log1/4 k] + 1 and η = k2δ(r − 1) and set δ(r) = δ(r − 1)(1 − φ) + φ − 1/k.
Starting with the classical estimate Jk,k(P ) � P k, it follows from Lemma 5.1 by

induction that Jrk,k(P ) � P 2s−k(k+1)/2+k2δ(r) for each r. The lemma will follow
upon showing that

(5.1) δ(r) < e−2r/k.

Note that (5.1) holds if δ(r) < (log k/k)2 because of the restriction on r. Thus we
may assume that δ = δ(r− 1) > (log k/k)2. In the notation of Lemma 5.1, we have

η > (j − 1)(j − 2) log3/2 k, and hence if 1 6 J 6 j,

k2 +
1

2
(J − 1)(J − 2)− η < k2(1− δ′),

where
δ′ = δ(1− log−3/2 k).

Therefore,

φJ−1 <
k + k2(1− δ′)φJ

2k2
=

1

2k
+

1− δ′

2
φJ .

Since φj = 1/k, by induction on J we have

φJ 6
1

k(1 + δ′)

(
1 + δ′

(
1− δ′

2

)j−J)
(1 6 J 6 j).
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In particular,

φ1 <
1

k(1 + δ′)
(1 + 21−jδ′) <

1

k(1 + δ)
(1 + 2δ log−3/2 k).

Thus

δ(r) = δ − 1/k + (1− δ)φ1 < δ − 1

k
+

1− δ
k(1 + δ)

(1 + 2δ log−3/2 k)

= δ

(
1− 2− ω

k(1 + δ)

)
,

where ω = 2(1− δ) log−3/2 k. It follows that

δ(r) + log δ(r) < δ − δ(2− ω)

k(1 + δ)
+ log δ − 2− ω

k(1 + δ)

< δ + log δ − 2

k
+

2

k log3/2 k
.

Since δ(1) + log δ(1) < 1/2− log 2− 3/(2k), it follows by induction that whenever
δ(r − 1) > (log k/k)2,

δ(r) + log δ(r) < −2r

k
+

1

2
− log 2 +

1

2k
+

2r − 2

k log3/2 k

< −2r

k
.

(5.2)

Inequality (5.1) now follows by exponentiating (5.2).

Bounds for Vinogradov’s integral lead to minor arc bounds for Weyl sums as
provided in the next lemma, which collects together the estimates from Weyl’s
inequality (Lemma 2.4 of [Va81]), Theorem 5.2 of [Va81], and Theorems 1 and 2
of [Wo94b].

Lemma 5.1. Let ψ(x) =
∑k
j=1 αjx

j, and put f(α) =
∑P
n=1 e(ψ(n)). Suppose

that there exist a, q with |αk − a/q| < q−2, (a, q) = 1 and P 6 q 6 P k−1. Then
f(α)�ε,k P

1−σ(k)+ε, where

σ(k) = max
(
21−k, σ1(k), σ2(k)

)
,

σ1(k) = max
s>1

(
1− η(s, k − 1)

2s

)
,

σ2(k) = max
16r6k/2

(min(σ3(k, r), σ4(k, r))) ,

σ3(k, r) = max
s>k(k−1)/2

(
r − η(s, k − 1)

2rs

)
,

σ4(k, r) = max
t>1

(
k − r(1 + η(t, k))

2tk

)
.

In particular, 1/σ(k) 6 (3/2 + o(1))k2 log k.

We are now ready to bound G̃(k) in terms of η(s, k) and σ(k). Let f(x) = xk

and suppose that for each s we have bounds (1.3). It follows from the analysis of
section 5.3 of [Va81] that

(5.3) G̃(k) 6 1 + min
s

(2s+ ∆(s, k)/σ(k)).

Theorem 1 then implies
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Lemma 5.1. We have

G̃(k) 6 1 + min
16m6k
s>1

(
m(m− 1) + 2s+

η(s, k)

mσ(k)

)
.

To prove Corollary 1.1, let m = k and s = rk, where

r =

[
k

2
(log k + log log k)

]
+ 1.

By Lemma 5.1, η(rk, k) 6 k(log k)−1, and thus Lemmas 5.1 and 5.1 imply

G̃(k) 6 k2(log k + log log k +O(1)).

To bound G̃(k) when k is small, we apply Lemma 5.1 with values for η(s, k)
obtained by combining Lemma 5.1 with the technique of [Wo94a].

Lemma 5.1[Wo94a, Lemma 4.2]. Let l = [k/2] and u = [s(1−t/2l)−1]+1. Suppose
that r and t are natural numbers satisfying r > 3, t < 2l and r + t > k. If
0 < θ 6 1/r then

Js+t,k(P )� P (2s+ω(r,t,k))θ
(
P tJs,k(P 1−θ) + P (t/2)(2−kθ)(Ju,k(P 1−θ))s/u

)
,

where ω(r, t, k) = 1
2 (r + t− k − 1)(r + t− k).

This lemma provides superior bounds for Js,k(P ) when s is small (up to about

k3/2), but the improvements become negligible for large s and would only improve
the O(1) term in Corollary 1.1. Using these bounds as a starting point, Lemma 5.1
provides bounds for larger s. Because the bound for Js+t,k(P ) arising from Lemma
5.1 depends on a bound of Ju,k(P ) and usually u > s + t, the best bounds are
obtained by iterating these two lemmas. For k 6 20, the values of η(s, k) obtained
this way are 1-2% smaller than those arising from Lemma 5.1 alone. Using these
bounds in Lemma 5.1 produces values of σ(k) recorded in the next lemma. For
k 6 10, we take σ(k) = 21−k, for 11 6 k 6 13 we take σ(k) = σ1(k) and for k > 14
we take σ(k) = σ2(k) (the optimal value of r being r = 2 in each case).

Lemma 5.1. Let ρ(k) = 1/σ(k). We have ρ(11) 6 802.131, ρ(12) 6 1005.037,
ρ(13) 6 1230.216, ρ(14) 6 1432.688, ρ(15) 6 1646.279, ρ(16) 6 1872.185,
ρ(17) 6 2127.695, ρ(18) 6 2450.788, ρ(19) 6 2795.532, ρ(20) 6 3168.424.

As a concluding remark, combining Theorem 1 with an application of the circle
method leads to the estimate

(5.4) Is(P ) ∼ C(f, s)P 2s−k

for some constant C(f, s), valid for s > 1
2k

2(log k + log log k + c), where c is an
absolute constant (see, for example, Lemma 7.12 of [Hu65]). By comparison, using
(1.7) with Lemma 5.1, we may only conclude that (5.4) holds for s > k2(log k +
1
2 log log k + c).
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