RECENT PROGRESS ON THE ESTIMATION OF WEYL SUMS

KEVIN FORD

1. INTRODUCTION

The classical Weyl sums take the form

(11) S(a7 P) = Z €(Oéknk + e+ am), e(z) — e27riz’
n<P
where o = (ay,...,a;) is a point in R¥. Bounds for Weyl sums have numerous

applications, particularly in number theory. For example, there are well-known
applications to Waring’s problem ([6], [5], [17], [31], [32], [34], [35]), the distribution
of fractional parts of polynomials ([1], [21], [37]), the theory of the Riemann zeta
function ([4], [14], [8], [11], [18], [25], [28], [30]), as well as a recent application to
arithmetic progressions in integer sequences ([19], [20]).

Most frequently in applications, one requires upper bounds on |S(a; P)| in terms
of rational approximations of the numbers «; and/or upper bounds for mean values
of |S(a; P)|™. In this note we concentrate on recent work (the past 10-15 years) on
such bounds, focusing on the quality of the bounds as k becomes large. We omit
discussion of the extensive literature on bounding Weyl sums with & small (< 20),
as well as bounds for multiple exponential sums

Z e(f(zla"'amn))a

(Z1,---,Zn)ER

where f is a polynomial and R is a subset of R (see [3]).

Perhaps the most fundamental quantity is a mean value over all of the coeffi-
cients a; which is known as Vinogradov’s integral or Vinogradov’s mean value. It
is defined by

(1.2) Tox(P) = / |S(a; P)* der.
[0,1]®

Recently proved bounds for J, ;(P) will be discussed in section 2. Bounds for the
single variable mean value

1 2s
(1.3) I t(P) :/0 Z e(af(n))| da,

n<lP

where f is a polynomial with integer coefficients, are examined in section 3. Non-
averaged upper bounds for |S(a; P)| are described in section 4.

It is often convenient in applications to number theory problems to consider the
more general sums

(1.4) S(e;T) = Ze(akn"+---+a1n),
neT
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where T is a finite subset of integers < P. There is much literature on bounds for
such sums with T =Z N (P/2,P]or T = {p < P : p prime} (see e.g. [24]). We do
not discuss these here. An extremely fruitful and important line of investigation
in recent years, which we will discuss in this note, has been the development of
bounds of S(a;T) when T = &/ (P, R), the set of integers < P composed only of
prime factors < R (so-called “smooth” or “friable” numbers). See especially [32],
[35] and [43]. See [22] for an account of the distribution of smooth numbers. Section
5 provides a summary of bounds for these so-called smooth Weyl sums. Finally,
in section 6, we indicate how the bounds in the first 5 sections may be applied to
Waring’s problem, the fractional parts of polynomials, and to the Riemann zeta
function.

Throughout, |z| denotes the greatest integer < z, {z} = z — |z] is the frac-
tional part of z and ||z|| = min({z},1 — {z}) is the distance from z to the nearest
integer. Constants implies by the Landau O— and Vinogradov <« — symbols do
not depend on any parameter unless specified with subscripts. Also, c1,¢a, ... will
denote certain absolute positive constants.

2. VINOGRADOV’S INTEGRAL

Bounds for the mean value (1.2) were first considered by Vinogradov in the
1930’s. Crucial to estimations is the observation that Js ; (P) is equal to the number
of solutions of the simultaneous Diophantine equations

21)  w+tal=yl++yl 1<j<k); 1<my <P
More generally, for h = (hq, ..., h), let J5 ;(P;h) be the number of solutions of

8

S@l-y)=h; A<j<k); 1<w,y <P
=1

In particular,
Jox(P;h) = / 1S(e; P)** e(—ashy — - — axhi)der
[0,1]®
< Js,k(P; 0,...,0) = Js,k(P).

(2.2)

Hence, writing @ = | P|, we obtain
(23)  Q¥= Y J(P;h) <) Jok(P) < (29)FQFETV2 T 1 (P).
h

h .
[hj|<s(Q?—1)

Counting only the solutions of (2.1) with x; = y; for each 7 gives a trivial lower
bound J, 1 (P) > @Q°. Therefore

(2.4) Jok(P) > max ((2s) %P2 #6041 | PJ)

It is conjectured that the right side of 2.4 is the true order of magnitude of J; x (P),
at least up to a factor P°. Upper bounds take the form of

(2.5) Jok(P) < D(s, k)P skk+D+n,

where n > 0 and D(s, k) is independent of P. For convenience, we shall define
n(s, k) to be the infimum of values of 7 for which (2.5) holds for some constant
D(s,k) (where D(s, k) may depend on 7 also).
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For example, Stechkin [13] in 1975 proved the all-purpose bound
1
(2.6) n(rk, k) < 518(1 —1/k)".

Bounding J; 1 (P) is usually accomplished in an iterative way, by relating J; x(P)
to Jy 1 (P') where s' < s and P’ < P. For instance, the p-adic method in its basic
form gives
Jok(P) <p.s P2.s/k+%(3k75)J87k,k(P171/k)‘

Iterating this inequality gives (2.6). There have been several improvements of (2.6).
First are improvements in the exponent when s is small (s < 1k(k + 1)). For such
s it is conjectured that J; ,(P) <. Pt for every € > 0, so we define d(k, s) to be
the infimum of numbers § for which

(2.7) Js,k(P) <Ls,k,0 psto
Table 1 lists upper bounds for §(k, s).

o(k, s) Reference
O(s*? k) Archipov and Karatsuba [2], 1978
O(s?/k?) Tyrina [12], 1987
O(sk?/? exp{—c1k?/s%}) Wooley [38], 1994

TABLE 1. Upper bounds on J; ;(P) for small s

In particular, for s < ck%/2/\/Togk, Wooley’s result implies §(k,s) < 1/k,
which is very close to the conjectured bound. Wooley’s bound is based on iteration
of the following result (Lemma 4.2 of [38]) which relates bound for J; ;(P) in terms
of bounds for quantities Jy (@) with s’ < s and s’ > s.

Lemma 2.1. Suppose 3 < r < k, 3 <t < 2\k/2|], 7+t > k and put u =
|1/(1— 1t/ |k/2]) +1]. Suppose 1 < M < PY" and put H = PM~" and Q =
PM~t. Then

Js+t,k(P) ks M23+%(T+t—k+1)(r+t—k) [Pth,k(Q) + (PH)t/ZJu’k(Q)s/u] )

The most substantial improvement of Stechkin’s bound throughout the range
1 < s < k?logk is due to Wooley [36]. He bounds Jy i, (P) in terms of Js x(Q)
using an iterative method which we now sketch. Suppose 0 <d<k—1and T is a
positive integer. We say the k-tuple of polynomials ¥ = (¥4, ..., ¥;) € Z[z]* is of
type (d,T) if ¥; is identically zero for j < d, and when j > d, ¥; has degree j — d
with leading coefficient (T—‘!dﬁT‘

Fix k and suppose 1 <r < k. If & = (¥y,... ¥;) is a system of polynomials, let
K;(P,Q; ¥; q) be the number of solutions of the simultaneous equations

k s
Do)~ w) + 4 Y@l —p) =0 (1<),

1<z,w; <P; 1<z, <Q.
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Here the inequalities on the variables z;, w;, ;,y; hold for every i. For prime p, let
Ly(P,Q;¥;p,q) be the number of solutions of

k s

S (z0) — Uiwi) + (pg Sl —vd) =0 (1<j<h),

i=1 i=1
1< z,w; < P; z;=w; (mod p*); 1 < wjyv; < Q.

Below are the main iteration lemmas (essentially Lemmas 3.1 and 4.1 of [36]; see
also Lemmas 3.2 and 3.3 of [18]).

Lemma 2.2. Suppose P/ < M < P'/* M <« Q < P and ¥ is of type (d,T).
For some prime in [M,2M] and a system of polynomials ® of type (d,T) we have

Ko(P,Q; ¥;q) g0 MPHEC =D (P Q. g).
Lemma 2.3. Suppose that s > d, d < k—2,q > 1, p is a prime and ® is a
system of polynomials of type (d,T). Then there is a system of polynomials X of
type (d+ 1,T") with T <T' < PT such that

Ls(P; Q; ®;p,q) < (2P)* max[k* J, 4(Q), 207 {Jok(Q) K, (P, Q; X;p9)}/?].

Starting with ¥ = (z,22,...,2%) and iterating these two lemmas produces the
bounds (see [17], inequality (5.2))
(2.8)
1 1 .
n(s, k) < (5 +0 (\/@)) k2el/2=2s/K (1 < s <k*(logk — loglogk)).

A slight improvement (though important in the application to the Riemann zeta
function) was given by the author ([18], Theorem 3):

(2.9) n(s, k) < (g + 0(1)) k2el/2=28/k"

For even larger s it is possible to prove an asymptotic formula
(210) Js,k(P) = C(k, S)stf%k(l‘ﬂ’l) + O(P2S*%k(k+1)fc3

using the circle method. This was first accomplished by Vinogradov in the 1930’s.
In 1957, Hua [24] proved that (2.10) holds for s > (3 + o(1))k? log k. This was not
improved until Wooley [36] used (2.8) to show that (2.10) holds with s > (5/3 +
0(1))k?log k. Later Wooley [42] showed that (2.10) holds with s > (1+0(1))k? log k.

3. SINGLE VARIABLE MEAN VALUES
By orthogonality, Is ¢ (P) is the number of solutions of the equation
fl@) 4+ fles) =fly) +--+flys) (1< zi,0: < P).
Suppose that

f@) =aix+---+apz®, ap £0.
By an argument similar to the one leading to (2.4), we have

I, ;(P) >, 5 max(P?®, P>*=F),

It is conjectured that the right side represents the true order of magnitude of
I, ;(P), at least up to a factor P*.
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It is possible to use bounds for Js ;(P) to bound I, ¢(P) in a simple way. Re-
calling the definition of J; ;(P;h) from section 2, we find that

LiP)= > Jok(Ps(ha,hay...hicy, (arhy + - + ag_1hg_1)/ax)

h1,...,hk_1
< Y TP
(3'1) hi,..shp—1

s Pk(kfl)/2J87k(P)
Ly e P2s—k+n(s,k)+s.

Bombieri ([15], Theorem 5) proved a more general inequality which implies that

P25 J, 1 (P)

(3.2) I 1 (P) < m

However, applying the lower bound (2.4) to the denominator J, ;—1(P), we recover
(3.1).

Until recently, (3.1) was the best known method for bounding I, ;(P) when k is
large. Using Wooley’s bounds (2.8) produces non-trivial upper bounds for I ¢(P)
only when s > k?logk.

In 1995, the author [17] developed a more sophisticated method of bounding
I, ¢(P), which produces the bounds

(3.3) Is,f (P) Lo fre P23—k+%n(s—m(m—1)/2,k)+s,

where 1 < m < k. This gives non-trivial upper bounds when s > k2. The
fundamental idea is to transition from I ¢ (P) to Js x(P) in a multi-step procedure,
adding one equation at each step. Specifically, let I, (P;q,b) be the number of
solutions of
s
D (flgmi +b) — fqyi +1) =0
i=1
kd . .
Y @l-yh=0  (1<j<m-1

i=1
with 0 < z;,y; < P/q for each i. Suppose k>3, 1<m<k—-1,q~ pt-i/m_ <
b< qand (f%)(b),q) =1for 1 < j < k—1. Then for some prime p ~ P/ (m(m+1))
and 0 < a < p we have (Lemma 4.1 of [17])

Lym(P;q,b) K4 g p?*~2mt3mmi L (P;pg, b + ag).

Tterating this expression leads to (3.3). However, in light of (2.4), one can never
prove the conjectured bound for I, ¢(P) using (3.3).
For larger s one can prove via the circle method an asymptotic formula

(3-4) L,s(P) = (C(f,5) +o(1))P**™% (P — c0).

See for example the proof of Theorem 5.4 of Vaughan [33]. Hua’s bound [23]
for J, (P) implies that (3.4) holds for s > (2 + o(1))k?logk. Wooley’s bound
(2.8) gives (3.4) holds for s > (1 + o(1))k?logk, and (3.3) implies (3.4) for s >
(1/2 + o(1))k* log k.
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4. NON-AVERAGED UPPER BOUNDS

The fundamental idea behind upper bounds on |S(e; P)| is that if |S(a; P)| is
large at a point , then it also large on a set of points a € [0, 1]* of large measure.
Upper bounds on Js x (P) then imply upper bounds on |S(e; P)|. Given an a with
|S(a; P)| large, Taylor’s theorem implies that |S(8; P)| will be large when g is
“close” to a (in some small box in R centered at ). For example, Montgomery
[27] proves that if |a; — ;| < 5257 for 1 < j <k, then
|S(a; P)|

1+m

The other method used to produce large Weyl sums from a given one is to shift the
variable of summation. Trivially

(4.1) <18(8; P)| < (1 +m)[S(ex; P)|-

(4.2) de(lagnF )= > e(ayn® +---)| < 2N.

n<P N<n<P+N

Making the substitution n = h + N, we see that the second sum is S(3; P), where
k

(4.3) Bj = Z (z) ;N7 (1<j<k).
i=; M

If a4 is not too close to a rational number with small denominator, 8 will not be
too close to a. Combined, these two ideas produce many small boxes in [0, 1]¥ on
which the associated Weyl sums are about the same magnitude.

The most standard estimate, due to Vinogradov, depends on a rational approx-
imation of a single a;: Suppose |a; — p/q| < 1/¢?, where p and ¢ are integers,
ged(p,gq) =1 and P < ¢ < P/~1. Then we have (see Chapter 5 of [33])

1/2s
(4.4) 1S (ct; P)| <i.s (Js,k_l(zp)PMk—l)/?—l) log P,

which holds for any s > 1. In practice one usually uses this result with j = k because
(i) the term ayn” is the most oscillating part of the exponential in (1.1) and (ii)
the larger possible range of g. Inequality (4.4) is non-trivial only if J, ;1 (2P) =
o(P2s—zk(k=1)+1) ' o when (s, k) < 1. Let p(k) be the supremum of all numbers
p such that if |ay — p/q| < 1/¢* with ged(p,q) = 1 and P < ¢ < P*~1, one has

|S(e; P)| < P17
Then (4.4) implies that

. 1—n(s,k—1)
4. < _
(4.5) p(k) < min 5
In particular, (2.8) implies that p(k)~! < (2 + o(1))k%log k. this improves a result
of Hua [23], who proved that p(k)~! < (4 + o(1))k*logk. A further improvement
was given by Wooley [41], who proved that p(k)~! < (3/2+ o(1))k? log k. The key
idea was to use a result of Bombieri ([15], Corollary 1 to Theorem 8), which states
that for P* < ¢ < P,
- k-1
(16) S(aiP)| <. Piowte, = TEIRES),

Bombieri [15] has interesting discussions on different approaches for estimating
1S (e; P
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Bounds for |S(e; P)| which depend on rational approximations of more than
one of the numbers a; are more complicated to state. We defer discussion of them
until section 6, where we concentrate on the estimates related to the Riemann zeta
function.

5. SMOOTH WEYL SUMS
The general smooth Weyl sum is defined by

S(a; P,R) = Z e(ain + -+ + agn®).
n€w/(P,R)

In some applications, it suffices to consider the simpler sum

filsPLR) = > e(an®).
ne(P,R)

The advantages of using fy,(c; P, R) are (i) n* is multiplicative, and (ii) the numbers

in &/ (P, R) have closely spaced divisors (if n € &/(P,R) and 1 < T < n then n
has a divisor in [T, TR]). Using these facts, Vaughan [Val] showed that one can
imitate the iterative method used to bound Vinogradov’s integral J; ; (P) to bound
the mean value

(5.1) SS(P,R)z/O |fx(es P, R)|*® dov.

In particular, Vaughan showed that for each s > 1, for every € > 0 and for n > 0
depending on ¢, k, s, that

(52) SS(P, Pn) <<k,s,s P2s—k+k(1—1/k)8+e‘

This can be considered an analog of Stechkin’s bound for J, ,(P), and is greatly
superior to known bounds for I;(f; P) (see section 3). Indeed, the bounds come
very close to the conjectured upper bounds Ss(P, P") <, 5. P2*~%+¢ when s has
order klogk. Vaughan also exploited the properties of &/ (P, R) to prove for a not
too close to a rational number with small denominator that

(5.3) |fr(e; P, P")| g P20 (k) ™! = (44 0(1))k log k.

Again this is vastly superior to the known upper bounds for |S(e;P)| given in
section 4, e.g. (4.5).

Wooley developed a more sophisticated iterative scheme, similar to the method
he used to prove (2.8), which improved both (5.2) and (5.3). In [35], [37] he proves
that for each k, s and for 7 depending on £, s,

(5.4) Sy(P, P") &y py PRokFRTHE

the significance being that the exponent of P approaches 2s — k twice as fast as
the exponent of P in (5.2). One consequence of this mean value is (5.3) with
v(k)™! = (2 + o(1))k log k. This last bound was improved further by Wooley [40],
so that (5.3) holds with v(k)™! = (1 + o(1))klog k.

Improvements to the upper bounds for S,(P, P") when s < vk have been given
by both Vaughan and Wooley. In this range of s (indeed for s < k) it is expected
that Sg(P, P") <, P*1¢, and the estimates of Vaughan and Wooley for small s
take the form

(5.5) Sy(P, P") & pH(sk)
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where (s, k) is small. Vaughan [32] proved (5.5) with
(s, k) ~ e=Clog”(k/s?)

Wooley improved this a little bit in 1994 [38], then in 1995 [39] greatly improved
the bound, showing (5.5) holds with

vom="Fepf- 51 @<s<omv.
es e?s
The techniques used are similar to those used by Wooley to prove his upper bound
for 6(k, s) given in Table 1.
In 1997, Wooley [43] extended the method for bounding S,(P, P") to bound the
more general smooth Weyl sums

t
fx(o; P, P") = Z e Zajnkj ;

new/ (P,Pm) Jj=1
k= (ki,ko,--. k), ki>ky>--> k.

and the associated mean values

Ss,k(P,P"):/ \fu(a; P, P dav, - - - da.
o

Define A(s, k) to be the infimum of numbers A such that for some n > 0 we have
Sy x(P,P") < x " Pp2s—(kit- k) +A

Then we have (Theorem 2 of [43])
(5.6)
A(s k) < {tklez_%/(““l) 1 <5< sg:= 3tki(log(tk1) — 2loglog k1)

e3 log2 k‘l(]. — l/kl)(siso)/t S > 8¢.

These mean value bounds interpolate between Wooley’s bounds for S, (P, P7) given
in section 5 and his bounds for J, (P, P") given in section 2. Likewise, Woo-
ley’s bounds for |fx(c; P, P7)| interpolate between known bounds for |S(a; P)|
and bounds for |fx(a; P, P")| (see [43], Theorems 4 and 5).

6. SOME APPLICATIONS

Here we briefly indicate some of the applications of the estimates from the pre-
vious sections. Fuller expositions may be found in the original papers, as well as
the monographs [24], [33] (for Waring’s problem and the circle method), [1] (for
problems on fractional parts of polynomials), [30], [25], [14] (for applications to the
Riemann zeta function).

I. Waring’s problem. Let R, ;(n) be the number of solutions in non-negative
integers z1, ..., 7, of the equation z¥ + - - - + ¥ = n. The main quantity one wants
to bound in Waring’s problem is G(k), the smallest number s so that R, y(n) >0
for all sufficiently large n. The existence of G(k) for all k was established by Hilbert
in 1909. In the 1920’s, Hardy and Littlewood developed the circle method to attack
this and related additive problems. The circle method is based on the identity

R, 1 (n) :/0 g(a)’e(—na) da
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where

gla)= Y elamh).
m<nt/k
One then breaks [0, 1] into many subintervals, applying different estimates for g(«)
on each subinterval. In this way Hardy and Littlewood proved upper bounds on
G(k) roughly of order 2¥. The machinery of the circle method was improved many
times by Vinogradov, the most significant innovation being the introduction of the
mean value (1.2). Vinogradov showed in the 1930’s that G(k) < klogk. Table 2
summarizes more recent progress on bounding G (k) for large k. Vinogradov’s 1959

result depended on his asymptotic formula (2.10). Wooley’s bound depended on
his bounds (5.4).

Upper bound on G(k) Reference

3k(logk + O(1)) Vinogradov [6], 1947

2k(logk + O(loglogk)) | Vinogradov [5], 1959

k(log k + O(loglogk)) Wooley [35], 1992
TABLE 2. Progression of upper bounds on G(k).

Hardy and Littlewood also established an asymptotic formula for R, ;(n) as
n — oo, provided s is large enough. Let G/(k) be the smallest value of s for which
the Hardy-Littlewood asymptotic formula holds. Table 3 gives recent progress on
bounding G (k). Wooley’s bound was a direct consequence of his improved bounds

(2.8) on J; 1 (P). The author’s 1995 result is a consequence of his improvements to
the bounds for I;(P; f) (3.3).

Upper bound on G (k) Reference

(4 +o(1))k*logk Hua [23], 1949

(2+0(1))k%logk | Wooley [36], 1992

(1+0(1))k*logk Ford [17], 1995

TABLE 3. Progression of upper bounds on G(k).

II. Fractional parts of polynomials. The main idea in this topic, due to
H. Weyl, is that the fractional parts {a;} of a sequence aq,as,... are uniformly
distributed in the interval [0, 1] provided that

N

S elham) = o(N)

m=1
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for every h > 1. Of particular interest is the distribution of integers n for which
[|f(n)|| is small, where f(z) € R[z]. Define 7(f) to be the supremum of all numbers
7 for which

min || ()] < N

The polynomial an* has received the most attention, and Table 4 details recent
progress on bounding 7(an*).

Upper bound on 7(an*)~! Reference
(44 o(1))klogk Baker [1], 1986
(24 0(1))klogk Wooley [37], 1993
(14 0o(1))klogk Wooley [40], 1995

TABLE 4. Progression of upper bounds on 7(an*)~!.

For an arbitrary polynomial f(n) = ajz+- - -+agz*, the bounds are considerably
worse. Let 7* (k) be the supremum of 7(f) over all polynomials f of degree k. Baker
[1] proved that 7*(k)~1 < (8 + o(1))k? log k and this was improved by Wooley [36]
to 7*(k)~! < (4 + o(1))k? log k as a consequence of (2.8).

One may also ask for unlocalized bounds. Let o(f) be the supremum of all
numbers o for which ||f(n)|| < n~7 has infinitely many solutions (they may be
widely separated). Heath-Brown [21] showed that o(an®)~! < 14.425k and Wooley
[37] use the theory of smooth Weyl sums to improve this to o(an*)~1 < 9.063k.

In [43], Wooley uses bounds for general mean values (5.6) to bound o(f) and
7(f) when f(n) = a;n® +---+ ayn* and 1 < ky < --- < ky. Wooley proved that
([43], Theorems 6 and 7)

1—(t—1)A(s,k)
>
()2 2:;1?5&1 2st+ 1+ A(s, k)
S 1
= 2k (log(k1t3) + O(loglog k1))

and that ([43], Theorem 8, Corollary 8.1)

kl - 2A(S,k)
o(f) 2 max ——5—
1

> .
= 2k1(logt + loglogt + 7)2

ITI. The Riemann zeta function. The location of the non-trivial zeros of the
Riemann zeta function ((s) is critically important to numerous questions in prime
number theory. It is conjectured (the Riemann Hypothesis) that they all lie on
the line fs = %, but what we know is far weaker and progress has been very slow.
Table 5 summarizes progress of the zero-free region. For each line in Table 5,
¢(s) #0 for s > 1 — B(t), and the letter ¢ stands for an absolute constant, which
may be different on each line.
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A(t) Reference
Tog T de la Vallée Poussin [16], 1899
clog oelt] Littlewood [26], 1922
W Tchudakoff [29], 1938
(10g|t‘)2/3(160g TRE Korobov [11], Vinogradov [4], 1958

TABLE 5. Zero-free regions for ((s).

The zero-free region depends on upper bounds for |((s)| for s inside the critical
strip 0 < s < 1, and these bounds ultimately depend on exponential sum bounds
of the type

(6.1) S(N,t) = Z ni = Z o—itlogn.

N<n<2N N<n<2N

Tchudakoff, Korobov and Vinogradov apply the Weyl shifting technique and ap-
proximate log(1+4z) by a Taylor series of order k, reducing the problem to bounding
a Weyl sum for which bounds on J, ;(P) (with explicit constants D(s,k)) come
into play. It is not difficult to work out the constant D(s, k), even in Wooley’s
method. One gets for s < k2 that D(s, k) = k%’ works (see e.g. [18], Theorem
3).
The Weyl sum estimates of Korobov and Vinogradov ([9], [8], [7], [10], [11], [4])
depend on rational approximations of many of the coefficients «; of the Weyl sums
which arise. Assuming conditions on several of the coefficients o, the methods
produce bounds of the form

S (e P)| < Pes/K,

improving on (4.5). A particularly nice estimate was given by Vinogradov [4], and
depends on using (4.2) with N = ab and summing on both a and b. Incorporating
a small refinement due to Heath-Brown (see [30], pp. 134-137 and [18], Lemma
5.1), one obtains the following,.

Lemma 6.1. Suppose k>2,s>2 and1< M <+/N. Then

$ML2R+2
ENE 7

S(N ) < N [(58)F MFED2=45 (1 (M)W - Wi | 7 4+ 2M% 4
where, for 1 < j <k,

— j . t 1
W; = N22§N|{|d| <sM? =1 |ldg sl < g H

, Mi  47j(2N)I
gmin<23Mﬂ,4+8t i )>.

TjNi stM7J

This lemma can be used to prove an upper bound for {(s) near the line s = 1.
In 1967, Richert [28] proved that

(6.2) IC(o +it)| < 1P 10?2 [t (8] > 3)
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with B = 100. Recently, the author proved (6.2) with B = 4.45 [18]. The main
innovation was incorporating bounds for smooth Weyl sums into the argument.
For a set & of positive integers, let J, 4 1(#) be the number of solutions of the

system
s

Y@l -y)=0 (h<j<g)ziyi€ R

i=1
Lemma 6.2. Suppose k, r and s are integers > 2, and h and g are integers
satisfying 1 < h < g < k. Let N be a positive integer, and M;, M, be real
numbers with 1 < M; < N. Let & be a nonempty subset of the positive integers
< Ms. Then

t(M; M)k +1

. <
(6 3) S(N,t) < 2MM> + ENF

+

1
27s

M\ " o
N (é) ((5T‘)kM2_28 | M, | 2r+k(k+1)/2 Ty k(M) Ty 1 (BYWp, - -- Wg) ,

where

o J 1. t 1
Wy = max {ldl < sMj = 1: ldz |l < )

2sM]  stMI  4rj(2N)i
r| M) mINT et M)

< min 23M2j,

One applies this with g and h relatively close together (so that the parameter
t in (5.6) is small; about 0.06k), B = {n < M, : pln. = P"? < p < P"} and
then uses a version of (5.6) with explicit constants. The reason for using this %
is that the number in &7 (P, P7) might have a large number of prime factors, and
this leads to very large constants in (5.6).

REFERENCES

[ay

. R. C. Baker, Diophantine inequalities, Clarendon Press, Oxford, 1986.

. I'. 1. Apxunos and A. A. Kapany6a, Hogsasa ouenka unmezpaaa M. M. Bunozpadosa, I3BecTus
Axk. Hayx CCCP, cepust marem. 42 (1978), no. 4, 751-762, English translation: G. I. Arhipov
and A. A. Karacuba, A new estimate of an integral of I. M. Vinogradov Math. USSR Izvestiya
13 (1979), 52-62.

3. I'. . Apxumnos, A. A. Kapanyb6a, and B. H. Yy6apukos, Teopusi Kpamno.x mpuzoHOMempPus-

eckuxr cymm, Hayka, Mocksa, 1987.
4. . M. Bunorpanos, Hoeasa ouyenra dynwyuu (1 + it), U3Bectus Ax. Hayxk CCCP, cepus
maTeM. 22 (1958), 161-164.

N

5. , K eonpocy o eeprnetl epanuye das G(n), N3sectus Ak. Hayk CCCP, cepust maTeM.
23 (1959), 637-642.
6. , Memod mpuzonomempuueckux comm 6 meonuu wucea, Hayka, Mocksa, 1980, Eng-

lish translation of 1947 edition, revised and annotated by K. F. Roth and Anne Davenport;
Interscience Publishers, London and New York; 1954.

7. H. M. Kopo6os, Hogvie meopemukouucaose oyerky, Joxnans Ax. Hayxk CCCP 119 (1958),
433-434.

8. , O nyaaz gynryuu ¢(s), Joxaansr Ax. Hayxk CCCP 118 (1958), 431-432.

9. , 06 ouenke PayUOHAA HHLL MPULOHOMEMPUYECKUT cymm, Joxkmaasr Axk. Hayk CCCP
118 (1958), 231-232.

10. , Ouenru cymm Betina u pacnpedenerue npocmux wucea, Joknaaslr Ax. Hayk CCCP
123 (1958), no. 1, 28-31.

11. , OUeHKu MpPuUzoHOMEMPUYECKUT CYMM U UL NPUAOHCEHUA, YCIEXH MaTeM. HayK 13

(1958), no. 4 (82), 185-192.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

RECENT PROGRESS ON THE ESTIMATION OF WEYL SUMS 13

. O. B. Twipuna, Hosasa ouenra mpuzonomempuyeckozo unumezpasa M. M. Bunoepadosa,
UsBectus Ak. Hayk CCCP, cepus marem. 51 (1987), no. 2, 363-378, 447, English trans-
lation: O. V. Tyrina, A new estimate for a trigonometric integral of I. M. Vinogradov,
Math. USSR-Izv. 30 (1988), no. 2, 337-351.

C. B. Creukun, O cpedHUT 3HAYEHUAT MOOYAA MPULOHOMEMPUYECKOT Chimmbs, Tp. Marem.
un-ta uM. B. A. Creknosa AH CCCP 134 (1975), 283-309, 411, English translation: S. B.
Stechkin, Mean values of the modulus of a trigonometric sum, Trudy Mat. Inst. Steklov. 134
(1975).

C. M. Bopouumnu and A. A. Kapauyba, /[zema-@pynryus Pumana, Mocksa , 1994, Translated
from the Russian by Neal Koblitz; Walter de Gruyter & Co., Berlin, 1992.

E. Bombieri, On Vinogradov’s mean value theorem and Weyl sums, Automorphic forms and
analytic number theory (Montreal, PQ, 1989), Univ. Montréal, Montreal, QC, 1990, pp. 7-24.
C.-J. de la Vallée Poussin, Sur la fonction ((s) de Riemann et le nombres des nombres
premiers inférieurs ¢ une limite donnée, Mém. Couronnés et Autres Mém. Publ. Acad. Roy.
Sci. des lettres Beaux-Arts Belg. 59 (1899-1900), 1-74.

K. B. Ford, New estimates for mean values of Weyl sums, Internat. Math. Res. Notices
(1995), 155-171.

, Vinogradov’s integral and bounds for the Riemann zeta function, Proc. London
Math. Soc. (2002).

W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length
four, Geom. Funct. Anal. 8 (1998), no. 3, 529-551.

, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465-588.
D. R. Heath-Brown, The fractional part of an®, Mathematika 35 (1988), no. 1, 28-37.

A. J. Hildebrand and G. Tenenbaum, The distribution of numbers without large prime factors,
J. Théor. Nombres Bordeaux 5 (1993), 411-484.

L.-K. Hua, An improvement of Vinogradov’s mean-value theorem and several applications,
Quart. J. Math., Oxford Ser. 20 (1949), 48-61.

, Additive theory of prime numbers, American Mathematical Society, Providence, R.I.,
1965, Translated from the 1957 Chinese edition.

Aleksandar Ivi¢, The Riemann zeta-function, John Wiley & Sons Inc., New York, 1985.

J. E. Littlewood, Researches in the theory of the Riemann (-function, Proc. London Math.
Soc. (2) 20 (1922), XXII-XXVIII, Records, Feb. 10, 1921.

H. L. Montgomery, Ten lectures on the interface between analytic number theory and har-
monic analysis, American Mathematical Society, Providence, R.I., 1994.

H.-E. Richert, Zur Abschdtzung der Riemannschen Zetafunktion in der Ndihe der Vertikalen
o =1, Math. Ann. 169 (1967), 97-101.

N. Tchudakoff, On the functions ((s) and w(z), Comptes Rendus (Doklady) I’Académie des
Sciences de 'URSS, n.s. 21 (1938), 421-422.

E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press
Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown.
R. C. Vaughan, A new iterative method in Waring’s problem, Acta Math. 162 (1989), no. 1-2,
1-71.

, A new iterative method in Waring’s problem. II, J. London Math. Soc. (2) 39 (1989),
no. 2, 219-230.
, The Hardy-Littlewood method, second ed., Cambridge University Press, Cambridge,

1997.

R. C. Vaughan and T. D. Wooley, Waring’s problem: a survey, Proceedings of the Millennial
Conference on Number Theory, Urbana, Illinois, 2000 (2002).

T. D. Wooley, Large improvements in Waring’s problem, Ann. of Math. (2) 135 (1992), no. 1,
131-164.

, On Vinogradov’s mean value theorem, Mathematika 39 (1992), no. 2, 379-399.

, The application of a new mean value theorem to the fractional parts of polynomials,
Acta Arith. 65 (1993), no. 2, 163-179.

, Quasi-diagonal behaviour in certain mean value theorems of additive number theory,
J. Amer. Math. Soc. 7 (1994), no. 1, 221-245.

, Breaking classical convexity in Waring’s problem: sums of cubes and quasi-diagonal
behaviour, Invent. Math. 122 (1995), no. 3, 421-451.




14

40.

41.

42.

43.

KEVIN FORD

, New estimates for smooth Weyl sums, J. London Math. Soc. (2) 51 (1995), no. 1,
1-13.

, New estimates for Weyl sums, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 181,
119-127.

, Some remarks on Vinogradov’s mean value theorem and Tarry’s problem, Monatsh.

Math. 122 (1996), no. 3, 265-273.
, On ezponential sums over smooth numbers, J. Reine Angew. Math. 488 (1997),

79-140.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, UR-

BANA, IL 61801, USA



