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Dedicated to Jean-Marc Deshouillers on the occasion of his 60th birthday

Abstract. We apply recent bounds of the author for generalized Smirnov statistics to the
distribution of integers whose prime factors satisfy certain systems of inequalities.

1. Introduction

For a positive integer n, denote by p1 < p2 < · · · < pω(n) the sequence of distinct prime
factors of n. In this note, we study integers for which

(1.1) log2 pj ≥ αj − β (1 ≤ j ≤ ω(n))

or

(1.2) log2 pj ≤ αj + β (1 ≤ j ≤ ω(n)),

where α ≥ 0 and β ≥ 0 and log2 y denotes log log y. The distribution of integers satisfying
(1.1) is important in the study of the distribution of divisors of integers (see [3]; Ch. 2 of
[4]). We present here estimates for

Nk(x;α, β) = #{n ≤ x : ω(n) = k, (1.1)},
Mk(x;α, β) = #{n ≤ x : ω(n) = k, (1.2)}.

It is a relatively simple matter, at least heuristically, to reduce the estimation of Nk(x;α, β)
and Mk(x;α, β) to the estimation of a certain probability connected to Kolmogorov-Smirnov
statistics. Let us focus on the upper bound for Nk(x;α, β). If we suppose that pk ≥ xc

for some small c, then for each choice of (p1, . . . , pk−1), the number of possible pk is �
x/(p1 · · · pk−1 log x). Since

∑
p≤y 1/p ≈ log2 y, given a well-behaved function f , by partial

summation we anticipate that

(1.3)
∑

p1<···<pk−1≤x

f
(

log2 p1

log2 x
, · · · , log2 pk−1

log2 x

)
p1 · · · pk−1

≈ (log2 x)k−1

∫
· · ·
∫

0≤ξ1≤···≤ξk−1≤1

f(ξ) dξ,

where ξ = (ξ1, . . . , ξk−1).
Let U1, . . . , Um be independent, uniformly distributed random variables in [0, 1] and let

ξ1, . . . , ξm be their order statistics (ξ1 is the smallest of the Ui, ξ2 is the next smallest, etc.).
Taking m = k−1, the right side of (1.3) is equal to (log2 x)k−1/(k−1)! times the expectation
of f(ξ1, . . . , ξk−1). Letting f be 1 if (1.1) holds and 0 otherwise, the expectation of f is the
probability that ξj ≥ (αj − β)/ log2 x for each j.
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In general, let Qm(u, v), the probability that ξi ≥ i−u
v

for 1 ≤ i ≤ m. Equivalently, if
u ≥ 0 then

Qm(u, v) = Prob

(
Fn(t) ≤ vt+ u

n
(0 ≤ t ≤ 1)

)
,

where Fm(t) = 1
m

∑
Ui≤t 1 is the associated empirical distribution function. The first esti-

mates for Qm(u, v) were given in 1939 by N. V. Smirnov [5], who proved for each fixed λ ≥ 0
the asymptotic formula

(1.4) Qm(λ
√
m,m)→ 1− e−2λ2

(m→∞).

The sharpest and most general bounds are due to the author [2]; see also [1]. For convenience,
write w = u+ v − n. Uniformly in u > 0, w > 0 and m ≥ 1, we have

(1.5) Qm(u, v) = 1− e−2uw/m +O

(
u+ w

m

)
.

Moreover,

(1.6) Qm(u, v) � min
(

1,
uw

m

)
(u ≥ 1, w ≥ 1).

See [2] for more information about the history of such bounds and techniques for proving
them. A short proof of weaker bounds is given in §11 of [3].

Returning to our heuristic estimation of Nk(x) (and assuming that a similar lower bound
holds), we find that

Nk(x) ≈ x(log2 x)k−1

(k − 1)! log x
Qk−1

(
β

α
,
log2 x

α

)
.

We have (cf. Theorem 4 in §II.6.1 of [6])

(1.7) πk(x) := #{n ≤ x : ω(n) = k} �A
x(log2 x)k−1

(k − 1)! log x

uniformly for 1 ≤ k ≤ A log2 x, A being any fixed positive constant. Thus, we anticipate
that

Nk(x;α, β) � Qk−1

(
β

α
,
log2 x

α

)
πk(x).

Observing that the vectors (ξ1, . . . , ξm) and (1 − ξm, 1 − ξm−1, . . . , 1 − ξ1) have identical
distributions, we have

Qm(u, v) = Prob

(
ξi ≤

u+ v −m− 1 + i

v
(1 ≤ j ≤ m)

)
.

Hence, we likewise anticipate that

Mk(x;α, β) � Qk−1

(
k +

β − log2 x

α
,
log2 x

α

)
πk(x).

To make our heuristics rigorous, we must impose some conditions on α and β to ensure
among other things that there are integers satisfying (1.1) or (1.2). To that end, we set

(1.8) u =
β

α
, v =

log2 x

α
, w = u+ v − (k − 1) =

log2 x+ β

α
− k + 1
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for the estimation of Nk(x;α, β) and

(1.9) u = k +
β − log2 x

α
, v =

log2 x

α
, w = u+ v − (k − 1) =

β

α
+ 1

for the estimation of Mk(x;α, β).

Theorem 1. Suppose ε > 0, A ≥ 1 and 1 ≤ k ≤ A log2 x. Assume (1.8), u ≥ 1, w ≥ 1 + ε
and

(1.10) eα(w−1) − eα(w−2) ≥ 1 + ε.

Then, for sufficiently large x, depending on ε and A,

Nk(x;α, β) �ε,A min
(

1,
uw

k

)
πk(x),

the implied constants depending only on ε and A.

Theorem 2. Suppose A ≥ 1 and 1 ≤ k ≤ A log2 x. Assume (1.9), u ≥ 1, w ≥ 1 and that
for 1 ≤ j ≤ k, there are at least j primes ≤ exp exp(αj + β). Then, for sufficiently large x,
depending on A,

Mk(x;α, β) �A min
(

1,
uw

k

)
πk(x),

the implied constants depending only on A.

Remarks. Inequality (1.10) is necessary, since for large k, (1.1) implies

log n ≥
k∑
j=1

log pj ≥
k∑
j=1

eαj−β ≈ eαk−β

1− e−α
=

log x

eα(w−1) − eα(w−2)
.

The condition u ≥ 1 in Theorem 1 means that there is no significant restriction on p1.
It is a simple matter to apply the estimates for Nk(x;α, β) and Mk(x;α, β) to problems

of the distribution of prime factors of integers where ω(n) is not fixed. In the following, let
ω(n, t) be the number of distinct prime factors of n which are ≤ t. It is well-known (cf. Ch.
1 of [4]) that ω(n, t) has normal order log2 t. We estimate below the likelihood that ω(n, t)
does not stray too far from log2 t in one direction.

Corollary 1. Uniformly for large x and 1 ≤ β ≤
√

log2 x, we have

(1.11) #{n ≤ x : ∀t, 2 ≤ t ≤ x, ω(n, t) ≤ log2 t+ β} � βx√
log2 x

and

(1.12) #{n ≤ x : ∀t, 2 ≤ t ≤ x, ω(n, t) ≥ log2 t− β} �
βx√
log2 x

Proof of Corollary 1. The quantity of the left side of (1.11) is
∑

kNk(x; 1, β). Here u = β,
v = log2 x and w = log2 x+ β − k + 1. By Theorem 1 and (1.7),∑

log2 x−2
√

log2 x≤k≤log2 x−
√

log2 x

Nk(x; 1, β)� βx√
log2 x

,
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since πk(x) � x/
√

log2 x for |k− log2 x| ≤ 2
√

log2 x. This proves the lower bound in (1.11).
For the upper bound, we note that if k > log2 x+β, then Nk(x; 1, β) = 0. Hence, by Theorem
1 and (1.7),∑

k

Nk(x; 1, β)�
∑

k≤log2 x+β−2

β(log2 x+ β − k + 1)

k
πk(x) +

∑
log2 x+β−2<k≤log2 x+β

πk(x)

� βx√
log2 x

.

This proves the upper bound in (1.11).
The quantity on the left side of (1.12) is

∑
kMk(x; 1, β − 1). Here v = log2 x, u =

β + k − log2 x and w = β. By Theorem 2,∑
log2 x+

√
log2 x≤k≤log2 x+2

√
log2 x

Mk(x; 1, β − 1)� βx√
log2 x,

proving the lower bound in (1.12). Also by Theorem 2,∑
log2 x−β+1<k≤10 log2 x

Mk(x; 1, β − 1)� βx√
log2 x

.

If ω(n) = k > 10 log2 x, then the number, τ(n), of divisors of n satisfies τ(n) ≥ 2ω(n) ≥
(log x)6. Since

∑
n≤x τ(n) ∼ x log x, the number of n ≤ x with ω(n) > 10 log2 x is

O(x/ log5 x). By (1.7), the number of n ≤ x with log2 x − β − 4 < k ≤ log2 x − β + 1
is O(x/

√
log2 x). Finally, suppose k ≤ log2 x− β − 4. The number of n ≤ x for which d2|n

for some d > log x is O(x
∑

d>log x 1/d2) = O(x/ log x). If there is no such d, then by (1.2),

log n ≤ 2 log2 x+
k∑
j=1

log pj ≤ 2 log2 x+
k∑
j=1

ej+β−1 ≤ 2 log2 x+ 2ek+β−1 ≤ 1
2

log x,

thus n ≤
√
x. This completes the proof of the upper bound in (1.12).

Our methods for proving Theorems 1 and 2 are borrowed from [3], especially sections 8,
10 and 12 therein. The tools there are adequate for making precise the heuristic argument
outlined above when the function f is monotonic in each variable, even if f is discontinuous.
We provide details only for Theorem 1. In lower bound for Mk(x;α, β), we may need to fix
several of the smallest prime factors of n, but otherwise the details of the proof of Theorem
2 are very similar.

2. Certain partitions of the primes

We describe in this section certain partitions of the primes which will be needed in the
proof of Theorems 1 and 2. The constructions are similar to those given in §4 and §8 of [3].

Let λ0 = 1.9 and inductively define λj to be the largest prime such that∑
λj−1<p≤λj

1

p
≤ 1.

In particular, λ1 = 3 and λ2 = 109. By Mertens’ estimate, log2 λj = j+O(1). Let Gj be the
set of primes in (λj−1, λj] for j ≥ 1. Then there is an absolute constant K so that if p ∈ Gj

then | log2 p− j| ≤ K.
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Next, let Q ≥ e10 and γ = 1/ logQ. If p ≤ Q, then pγ ≤ e, hence pγ ≤ 1 + (e− 1)γ log p.
By Merten’s estimates,∑

p≤Q
f≥1

1

pf(1−γ)
= O(1) +

∑
p≤Q

(
1

p
+ (e− 1)γ

log p

p

)
= log2 Q+O(1).

It follows for an absolute constant K ′, independent of Q, that the set of primes p ≤ Q may
be partitioned into at most 1

2
log2 Q+K ′ sets Ej so that (i) for each j,∑

p∈Ej
f≥1

1

pf(1−γ)
≤ 2

and (ii) for p ∈ Ej, | log2 p− 2j| ≤ K ′. We stipulate that the above sum is ≤ 2 rather than
≤ 1 in order to accomodate the prime 2.

3. Proof of Theorem 1 upper bound

Without loss of generality, suppose that k is large, uw ≤ k/10, and n ≥ x/ log x. We have
v ≤ 1.1k and consequently α ≥ 1/(1.1A). Also, by (1.1),

log2 pk ≥ αk − β =
k − u
v

log2 x ≥ 0.8 log2 x.

We may suppose p2
k - n, as the number of n ≤ x with p2

k|n is O(x exp(−(log x)0.8)) =

O(x/ log x). For brevity, write x` = x1/e` . For some integer ` satisfying ` ≥ 0 and
exp exp(αk − β) ≤ x`, we have x`+1 < pk ≤ x`. With ` fixed, given p1, . . . , pk−1 with
exponents f1, . . . , fk−1, the number of possibilities for pk is

� x

pf1

1 · · · p
fk−1

k−1 log x`
� x1−γ/2e`

(pf1

1 · · · p
fk−1

k−1 )1−γ log x
,

where γ = 1/ log x`. This follows for ` ≥ 1 since pf1

1 · · · p
fk−1

k−1 ≥ x/(pk log x) > x1/2. We
conclude that

(3.13) Nk(x;α, β)� x

log x

∑
`

e`−
1
2
e`

∑
p1<···<pk−1≤x`
f1,...,fk−1≥1

(1.1)

(pf1

1 · · · p
fk−1

k−1 )1−γ.

Consider the intervals Ej defined in the previous section corresponding to Q = x`. Put
J =

⌊
1
2

log2 x` +K ′
⌋

and define j1, . . . , jk−1 by pi ∈ Eji . Let J denote the set of tuples
(j1, . . . , jk−1) so that 1 ≤ j1 ≤ · · · ≤ jk−1 ≤ J and such that ji ≥ 2(αi− β −K ′) for every i.
Given p1, . . . , pk−1, let bj be the number of pi in Ej, for 1 ≤ j ≤ J . The contribution to the
inner sum of (3.13) from those tuple of primes with a fixed (j1, . . . , jk−1) is

≤
J∏
j=1

1

bj!

( ∑
p∈Ej ,f≥1

1

pf(1−γ)

)bj
≤ 2k−1

b1! · · · bJ !
.

We observe that 1/(b1! · · · bJ !) is the volume of the region (y1, · · · , yk−1) ∈ Rk−1 satisfying
0 ≤ y1 · · · ≤ yk−1 ≤ J and ji− 1 < yi ≤ ji for each i (there are bj numbers yi in each interval
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(j − 1, j]). Making the change of variables ξi = yi/J and summing over all possible vectors
(j1, . . . , jk−1) ∈ J , we find that the inner sum in (3.13) is

≤ (2J)k−1 Vol

{
0 ≤ ξ1 ≤ · · · ≤ ξk−1 ≤ 1 : ξi ≥

2(αi− β −K ′ − 1)

J
(1 ≤ i ≤ k − 1)

}
≤ (log2 x+ 2K ′)k−1

(k − 1)!
Qk−1

(
β +K ′ + 1

α
,
J

2α

)
�A

(log2 x)k−1

(k − 1)!

(u+K ′/α)(w +K ′/α)

k

�A
uw

k

(log2 x)k−1

(k − 1)!
,

where we have used (1.6). By (3.13), summing on ` and using (1.7) completes the proof.

4. Proof of Theorem 1 lower bound

First, we assume k ≥ 2, since if k = 1 then N1(x;α, β) = π1(x) + O(log x) trivially as
β ≥ α (we assume u ≥ 1; powers of 2 may not be counted in N1(x;α, β)). Also, we may
assume that α ≥ 1/2A. If α < 1/2A, then Nk(x;α, β) ≥ Nk(x; 1/2A, 1/2A) and we prove
below that Nk(x; 1/2A, 1/2A)� πk(x) (here u = 1, v ≥ 2k and w ≥ k).

Let T be a sufficiently large constant, depending on ε and A, and put

C = e3T+2K+10.

We first prove the theorem in the case that

(4.14) eα(w−1) − eα(w−2) ≥ C.

Notice that

(4.15) αj − β = log2 x− α(w + k − 1− j).
In particular,

αk − β = log2 x− α(w − 1) ≤ log2 x− logC.

Let J = blog2 x−K − log T − 2c. Recall the definition of the numbers λj and sets Gj from
section 2. Consider squarefree n satisfying (1.1), with pk−1 ≤ λJ and for which

p1 · · · pk−1 ≤ x1/2.

Also take pk so that x/2 < n ≤ x. Given p1, . . . , pk−1, the number of possible pk is �
x/(p1 · · · pk−1 log x). Put b1 = · · · = bT−1 = 0 and for T ≤ j ≤ J , suppose bj ≤ min(T (j −
T − 1), T (J − j + 1)) for each j. Suppose there are exactly bj primes pi in the set Gj for
1 ≤ j ≤ J . By the definition of J ,

k−1∑
i=1

log pi ≤ TeJ+K

k−1∑
r=1

re1−r < 3TeJ+K ≤ 1

2
log x,

as required. Define the numbers ji by pi ∈ Gji . The inequalities (1.1) will be satisfied if

(4.16) ji ≥ αi− β +K (1 ≤ i ≤ k − 1).

This is possible since

α(k − 1)− β = log2 x− αw ≤ log2 x− 2K − 3T − 10 < J − T − 1.
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With (j1, . . . , jk−1) fixed (so that b1, . . . , bJ are fixed), the sum of 1/p1 · · · pk−1 is

=
J∏

j=T

1

bj!

(∑
p1∈Gj

1

p1

∑
p2∈Gj
p2 6=p1

1

p2

· · ·
∑
pbj∈Gj

pbj 6∈{p1,...,pbj−1}

1

pbj

)

≥
J∏

j=T

1

bj!

(∑
p∈Gj

1

p
− bj − 1

λj−1

)bj

≥
J∏

j=T

1

bj!

(
1− bj

λj−1

)bj

≥
J∏

j=T

1

bj!

(
1− T (j − T + 1)

exp exp(j − 1−K)

)T (j−T+1)

≥ 1/2

bT ! · · · bJ !

if T is large enough. The right side is 1/2 of the volume of the region of (y1, · · · , yk−1) ∈ Rk−1

satisfying 0 ≤ y1 ≤ · · · ≤ yk−1 ≤ J − T + 1 and ji − T ≤ yi ≤ ji + 1 − T for each i. Set
H = J − T + 1. Assume that

(4.17) jmT+1 ≥ T +m, jk−1−mT ≤ J −m (integers m ≥ 1),

so that bj ≤ min(T (j − T + 1), T (J − j + 1)) for each j. Making the substitution ξi = yi/H
and summing over all tuples (j1, · · · , jk−1) yields

(4.18) Nk(x;α, β)� xHk

log x
Vol(R)�A

x(log2 x)k

log x
Vol(R),

where, by (4.16) and (4.17), R is the set of ξ satisfying (i) 0 ≤ ξ1 ≤ · · · ≤ ξk−1 ≤ 1,
ξi ≥ (αi − β + K − T )/H for each i, (ii) ξmT+1 ≥ m/H and ξk−1−mT ≤ 1 −m/H for each
positive integer m.

It remains to estimate from below the volume of R. Let S be the set of ξ satisfying (i),
so that

Vol(S) =
Qk−1(µ, ν)

(k − 1)!
, µ =

β + T −K
α

, ν =
H

α
.

If T ≥ K, then µ �A u. By the definition of C and J ,

µ+ ν − (k − 1) =
J −K + 1 + β

α
− (k − 1) = w − log T +O(1)

α
≥ w

2
≥ 1.

Hence, by (1.6),

(4.19) Vol(S)� f

(k − 1)!
, f = min(1, uw/k).

The implied constant in (4.19) does not depend on T , but the inequality does require that
T be sufficiently large.

For a positive integer m, let

V1(m) = Vol{ξ ∈ S : ξmT+1 < m/H},
V2(m) = Vol{ξ ∈ S : ξk−1−mT > 1−m/H}.
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We have by (1.6),

V1(m) ≤ (m/H)mT+1

(mT + 1)!
Vol{0 ≤ ξmT+2 ≤ · · · ≤ ξk−1 ≤ 1 : ξi ≥ i−µ

ν
(mT + 2 ≤ i ≤ k − 1)}

=
(m/H)mT+1

(mT + 1)!

Qk−2−mT (µ− (mT + 1), ν)

(k − 2−mT )!

� (m/H)mT+1

(mT + 1)!

µ(µ+ ν − (k − 1))

(k −mT )(k − 2−mT )!

� fk(m/H)mT+1

(k −mT )(mT + 1)!(k − 2−mT )!

≤ f

(k − 1)!

(km/H)mT+1

(mT + 1)!

k

k −mT
.

Since k/H �A 1 and r! ≥ (r/e)r, it follows from (4.19) that for large enough T ,∑
m

V1(m) ≤ 1

4
Vol(S).

Similarly,

V2(m) ≤ Qk−2−mT (µ, ν)

(k − 2−mT )!

(m/H)mT+1

(mT + 1)!
.

By (1.6),

Qk−2−mT (µ, ν)� min

(
1,
µ(µ+ ν − (k − 1) +mT + 1)

k −mT

)
� mTkf

k −mT
.

Hence, if T is large enough then ∑
m

V2(m) ≤ 1

4
Vol(S).

We therefore have, for T large enough,

Vol(R) ≥ Vol(S)−
∑
m≥1

(V1(m) + V2(m))�A
f

(k − 1)!
.

Together with (4.18) and (1.7), this completes the proof under the assumption (4.14).
It remains to consider the case

1 + ε ≤ eα(w−1) − eα(w−2) ≤ C.

Since w ≥ 1 + ε and α ≥ 1/2A, we find that α �ε,A 1 and w �ε,A 1. Hence, is x is large
enough,

k = u+ v − w + 1 ≥ v − w ≥ log2 x

4A
.

Let B be a large integer depending on ε. Suppose that

(4.20) αj − β ≤ log2 pj ≤ αj − β + log(1 + ε/2) (k −B ≤ j ≤ k − 1)
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Then, by (4.15),

k−1∑
j=k−B

log pj ≤ (1 + ε/2)
(
e−αw + e−α(w+1) + · · ·+ e−α(w+B−1)

)
log x

< (1 + ε/2)

(
1

eα(w−1) − eα(w−2)
− e−α(w−1)

)
log x.

Assume also that

(4.21)
k−B−1∑
j=1

log pj ≤
ε/2

eα(w−1) − eα(w−2)
log x.

If in addition αk − β ≤ log2 pk ≤ αk − β + log(1 + ε/2), then by (1.10),

log n =
k∑
j=1

log pj ≤
ε/2 + 1 + ε/2

eα(w−1) − eα(w−2)
log x ≤ log x,

as required. Thus, given p1, . . . , pk−1 satisfying (4.20) and (4.21), the number of pk is �
x/(p1 · · · pk−1 log x). If B is large enough, there is great flexibility in choosing p1, . . . , pk−B−1,
since by (4.15),

k−B−1∑
j=1

eαj−β ≤ e−α(B+1)

eα(w−1) − eα(w−2)
log x,

which is small compared with the right side of (4.21). By the same argument used to give a
lower bound for the sum of 1/(p1 · · · pk−1) under the assumption (4.14), we obtain∑

p1,...,pk−B−1

1

p1 · · · pk−B−1

�A,ε
f(log2 x)k−B−1

(k −B − 1)!
.

Also, since k �A log2 x, we have∑
pk−B ,...,pk−1

1

pk−B · · · pk−1

�ε,B 1�ε,A (log2 x)B
(k −B − 1)!

(k − 1)!
.

The proof is again completed by applying (1.7).
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