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1. Introduction

The methods of Korobov [11] and Vinogradov [25] produce a zero-free
region for the Riemann zeta function ζ(s) of the following strength: for
some constant c > 0, there are no zeros of ζ(s) for s = β + it with |t| large
and

(1.1) 1− β ≤ c

(log |t|)2/3(log log |t|)1/3
.

The principal tool is an upper bound for |ζ(s)| near the line σ = 1. One
form of this upper bound was given by Richert [17] as

(1.2) |ζ(σ + it)| ≤ A|t|B(1−σ)3/2 log2/3 |t| (|t| ≥ 3, 12 ≤ σ ≤ 1)

with B = 100 and A and unspecified absolute constant. Subsequently,
(1.2) was proved with smaller values of B, the best published value being
18.497 [12] (the author has a new result [7] that (1.2) holds with B = 4.45,
A = 76.2).

Table 1 shows the historical progression of zero-free regions for ζ(s) prior
to the work of Vinogradov and Korobov.

Zero-free region Reference

1− β ≤ c

log |t|
de la Vallée Poussin [24], 1899

1− β ≤ c log log |t|
log |t|

Littlewood [13], 1922

1− β ≤ c

(log |t|)3/4+ε
Chudakov [5], 1938

Table 1
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Recently, versions of (1.1) with explicit constants c have been given,
valid for |t| sufficiently large. Popov [15] showed that (1.1) holds with
c = 0.00006888. Heath-Brown [8] proved (1.1) with c ≈ 0.0269B−2/3, and
he noted (but did not give details) that the methods of [9] could be used to
improve 0.0269 to about 0.0467. The main object of this note is to improve
the constant c as a function of B.

Theorem 1. If (1.2) holds with a certain constant B, then for large |t|,
ζ(β + it) 6= 0 for

1− β ≤ 0.05507B−2/3

(log |t|)2/3(log log |t|)1/3
.

Taking B = 4.45 (from [7]) in Theorem 1 gives the zero-free region (1.1)
with c = 1

49.13 . In addition, we prove a totally explicit zero-free region of
type (1.1), with an explicit c and valid for all |t| ≥ 3. This depends on both
A and B in (1.2)), and may be used to give completely explicit bounds for
prime counting functions (see e.g. [19], [20], [16]). Cheng [1] proved (1.2)
with A = 175 and B = 46 and used this to deduce that (1.1) holds for all
|t| ≥ 3 with the constant c = 1/990. In turn, this result was used to show
[2] that for all x > 10,∣∣π(x)− li(x)

∣∣ ≤ 11.88x(log x)3/5 exp{− 1
57 (log x)3/5(log log x)−1/5},

and that for x ≥ ee44.06 , there is a prime between x3 and (x+ 1)3 [3].

Theorem 2. Suppose (1.2) holds, T0 ≥ e30000 and log T0

log log T0
≥ 1740

B . Sup-

pose the zeros β + it of ζ(s) with T0 − 1 ≤ t ≤ T0 all satisfy

(1.3) 1− β ≥ M1B
−2/3

(log t)2/3(log log t)1/3
,

where

M1 = min

(
0.05507,

0.1652

2.9997 + maxt≥T0
X(t)/ log log t

)
,

and

X(t)=1.1585 logA+0.859+0.2327 log
(

B
log log t

)
+
(
1.313
B4/3 − 2.188

B1/3

) (
log log t
log t

) 1
3

.

Then (1.3) is satisfied for all zeros with t ≥ T0.

Since 0.1652
2.9997 > 0.05507, M1 = 0.05507 when T0 is sufficiently large. By

classical zero density bounds (see e.g. Chapter 9 of [23]), for some positive
δ, the number of zeros of ζ(s) is the rectangle 3

4 ≤ <s ≤ 1, 0 < =s ≤ T

is O(T 1−δ). Thus for most T0, ζ(s) is zero free in the region 3
4 ≤ <s ≤

1, T0− 1 ≤ =s ≤ T0. Taking such T0 which is sufficiently large, we see that
Theorem 1 follows from Theorem 2.
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To prove a totally explicit zero-free region of type (1.1) for |t| ≥ 3, we
make use of classical type (de la Valée Poussin type) zero-free regions for
smaller |t|. These take the form

(1.4) 1− β ≤ c

log |t|
(|t| ≥ 3).

Stechkin [21] proved (1.4) with c = 1/9.646 (he rounded this to c = 9.65 in
his Theorem 2). Very tiny refinements were subsequently given by Rosser
and Schoenfeld [20] and by Ramaré and Rumely [16]. With an explicit
version of van der Corput’s bound |ζ(1/2 + it)| � |t|1/6 log |t| for |t| ≥ 3,
the methods of this paper produce a zero-free region

(1.5) 1− β ≤ 1

C1(log |t|+ 6 log log |t|) + C2
, (|t| ≥ 3),

with C1 ≈ 3.36 and an explicit C2. Better upper bounds are known for
|ζ(1/2 + it)| for large t, the best being Oε(|t|89/570+ε) due to Huxley [10].
The implied constants are too large to improve the zero-free region, how-
ever. The zero-free region (1.5) also follows from Heath-Brown’s methods
with the same C1 (and slightly larger C3). In fact, the methods of this pa-
per do not improve on Heath-Brown’s methods when it comes to classical
type zero-free regions for ζ(s) or zero-free regions for Dirichlet L-functions
L(s, χ) when |t| is small and the conductor of χ is large (e.g. those in
[9]). Our methods do improve the Vinogradov-Korobov zero-free regions
for L(s, χ) when the conductor of χ is fixed and |t| becomes large.

It is known [14] that all zeros with |=ρ| ≤ 5.45 × 108 in fact lie on the
critical line. Still, at t = 5.45 × 108, 6 log log t ≈ 0.895 log t, so improving
greatly on Stechkin’s region for all |t| ≥ 3 with (1.5) is not possible. Still,
we can make a modest improvement using the bound

(1.6) |ζ(1/2 + it)| ≤ min
(

6t1/4 + 57, 3t1/6 log t
)

(t ≥ 3).

proved by Cheng and Graham [4] 1.

1[amended July, 2022] The proof in [4] contains an unfixable error, namely Lemma

3 is false (the best possible estimate in the Lemma was proved by Landau in 1927).

Since my paper was published in 2002, I became aware of an older bound |ζ(1/2 + it)| ≤
4(|t|/2π)1/4 for |t| ≥ 128π of R. S. Lehman, Proc. LMS (3) 20 (1970), p. 303–320,
Lemma 2. This is better than the first bound in (1.6) and by itself leads to better

numerical bounds in Theorem 4. The second bound in (1.6) has been improved recently
by Trudgian and Hiary, although the published papers also use the erroneous Lemma 3

from [4]. Correcting the mistake leads to the bound |ζ(1/2+it)| ≤ 0.77t1/6 log |t|, better
than the 2nd claimed bound in (1.6). For details see the paper by D. Patel, An Explicit
Upper Bound for |ζ(1 + it)|, arXiv: 2009.00769, and also: Ghaith A. Hiary, Dhir Patel,
and Andrew Yang, An improved estimate for ζ(1/2 + it), arXiv: 2207.02366
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Theorem 3. Let T0 = 5.45× 108 and let

(1.7) J(t) = min
(
1
4 log t+ 1.8521, 16 log t+ log log t+ log 3

)
.

Then ζ(β + it) 6= 0 for t ≥ T0 and

(1.8) 1− β ≤
0.04962− 0.0196

J(t)+1.15

J(t) + 0.685 + 0.155 log log t
.

We note that J(t) is an increasing function of t, and (J(t) + 0.685 +
0.155 log log t)/ log t is a decreasing function of t. Therefore, we conclude
as a corollary that

Theorem 4. We have ζ(β + it) 6= 0 for |t| ≥ 3 and

1− β ≤ 1

8.463 log |t|
.

Further verification that the zeros of ζ(s) for some range of t > 5.45×108

would give an improved constant in Theorem 4, as would an improvement
in the bound for |ζ(1/2 + it)| in the vicinity of t = T0.

We now return to the problem of producing a totally explicit zero-free
regions of Korobov-Vinogradov type. Taking B = 4.45, A = 76.2 (from
[7]), we find that

1.1585 logA+ 0.859 + 0.2327 log
(

B
log log t

)
+
(
1.313
B4/3 − 2.188

B1/3

) (
log log t
log t

) 1
3

≤ 6.22660− 0.2327 log log log t− 1.1508

(
log log t

log t

)1/3

≤ 5.6008.

Thus

(1.9) M1 ≥ min

(
0.05507,

0.1652

2.9997 + 5.6008
log log T0

)
.

We take T0 = e54550, use Theorem 3 for t ≤ T0 + 1, and Theorem 2 plus
(1.9) for larger t. This gives

Theorem 5. The function ζ(β + it) is nonzero in the region

1− β ≤ 1

57.54(log |t|)2/3(log log |t|)1/3
, |t| ≥ 3.

2. The zero detector

Lemma 2.1. Suppose f is the quotient of two entire functions of order
< k, where k is a positive integer, and f(0) 6= 0. If z is neither a pole nor
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a zero of f , then

f ′(z)

f(z)
=

∑
|ρ|≤2|z|

(z/ρ)k−1

z − ρ
mρ +Of

(
|z|k−1

)
,

∣∣log |f(z)|
∣∣ ≤

∣∣∣∣∣∣
∑
|ρ|≤2|z|

log
∣∣∣(1− z/ρ)eg(z/ρ)

∣∣∣
∣∣∣∣∣∣+Of

(
|z|k
)
,

where ρ runs over the zeros and poles of f (with multiplicity), g(y) =
y + 1

2y
2 + · · ·+ 1

k−1y
k−1, and mρ is either 1 (if ρ is a zero of f) or −1 (if

ρ is a pole of f). The implied constants depend on f .

Proof. By theorems of Weierstrass and Hadamard ([22], Ch. VII, (2.13)
and (10.1)),

f(z) = ef1(z)
∏
ρ

[
(1− z/ρ)eg(z/ρ)

]mρ
,

where f1 is a polynomial of degree ≤ k. Therefore, assuming that z is not
a zero or pole of f , we have

log |f(z)| = <f1(z) +
∑
ρ

mρ

(
log |(1− z/ρ)eg(z/ρ)|

)
,

f ′(z)

f(z)
= f ′1(z) +

∑
ρ

mρ

(
1

z − ρ
+

1

ρ
+

z

ρ2
+ · · ·+ zk−2

ρk−1

)
.

Now suppose |ρ| > 2|z|. We then have∣∣∣∣ 1

z − ρ
+

1

ρ
+

z

ρ2
+ · · ·+ zk−2

ρk−1

∣∣∣∣ =

∣∣∣∣ (z/ρ)k−1

z − ρ

∣∣∣∣ ≤ 2
|z|k−1

|ρ|k
.

Since
∑
ρ 1/|ρ|k converges, the first part of the lemma follows. Similarly∣∣∣(1− z/ρ)eg(z/ρ)

∣∣∣ ≤ exp{ 2k |
z
ρ |
k},

and the second part follows. �

The next lemma is the main “zero detector”. Instead of integrating
around a small circle centered at z = z0 (as in [9], Lemma 3.2), we integrate
over two vertical lines.

Lemma 2.2. Suppose f is the quotient of two entire functions of finite
order, and does not have a zero or a pole at z = z0 nor at z = 0. Then, for
all η > 0 except for a set of Lebesgue measure 0 (the exceptional set may
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depend on f and z0), we have

−<f
′(z0)

f(z0)
=

π

2η

∑
|<(z0−ρ)|≤η

mρ< cot

(
π(ρ− z0)

2η

)

+
1

4η

∫ ∞
−∞

log
∣∣f (z0 − η + 2ηiu

π

)∣∣− log
∣∣f (z0 + η + 2ηiu

π

)∣∣
cosh2 u

du,

where ρ runs over the zeros and poles of f (with multiplicity), and mρ is
either 1 (if ρ is a zero of f) or −1 (if ρ is a pole of f).

Proof. We must exclude η for which the lines <z = z0±η come “too close”
to a zero or pole of f , since otherwise the above integral might not converge.
By hypothesis, for some integer k, f is the quotient of two entire functions
of order < k. We say a positive real number η is “good” if there is a positive
number δ such that for every zero/pole ρ of f , |<(ρ − z0) ± η| ≥ δ|ρ|−k.
The number δ may depend on η. Since

∑
ρ |ρ|−k converges, the set of η for

which |<(ρ−z0)±η| ≤ δ|ρ|−k has measure O(δ) (here and throughout this
proof, implied constants depend on f and z0). Taking δ → 0 shows that
the measure of “bad” η is 0.

Suppose now that η is “good” with an associated number δ. We may
assume that 0 < δ ≤ 1. Let T be a large real number such that T ≥ η,
T ≥ 2|z0| and for all zeros/poles ρ of f , |=(ρ − z0) ± T | ≥ |ρ|−k. Since∑
ρ |ρ|−k converges, the set of “bad” T has measure O(1). Consider the

contour C = C1∪C2∪C3∪C4, where the Cj are the line segments connecting
the points η − iT, η + iT,−η + iT,−η − iT, η − iT , respectively. Let

I = I1 + I2 + I3 + I4, Ij =

∫
Cj

f ′(z + z0)

f(z + z0)
h(z) dz,

where

h(z) =
π

2η
cot

(
πz

2η

)
.

By Cauchy’s Residue Theorem,

(2.1) I =
f ′(z0)

f(z0)
+

∑
|<(ρ−z0)|≤η
|=(ρ−z0)|≤T

mρh(ρ− z0).

There is a holomorphic branch of log f(z + z0) on C∗, the contour C cut
at the point η. Applying integration by parts, and noting that h(η) = 0,



ZERO-FREE REGIONS FOR THE RIEMANN ZETA FUNCTION 7

we have

I = lim
ε→0+

[h(z) log f(z + z0)]
η−iε
η+iε −

1

2πi

∫
C∗
h′(z) log f(z + z0) dz

= −(J1 + J2 + J3 + J4), Jj =
1

2πi

∫
Cj

h′(z) log f(z + z0) dz.
(2.2)

The number of zeros/poles ρ with |ρ| ≤ x is O(xk), and |ρ| � 1 for every ρ.
By our assumptions about T , when z ∈ C we have |z+z0| � T . Therefore,
by Lemma 2.1 and our assumption about η,∣∣∣∣f ′(z + z0)

f(z + z0)

∣∣∣∣� T k−1 +
∑
|ρ|≤2|z|

|(z + z0)/ρ|k−1

|z + z0 − ρ|

� T k−1 +
T k−1

|ρ|k−1
|ρ|k

δ
� δ−1T k.

Likewise, using the second part of Lemma 2.1,

| log |f(z + z0)|| = O(T 2k−1 + T k log(Tδ−1))

for z ∈ C. Thus, there is a branch of log f(z + z0) with

| log f(z + z0)| � T 2kδ−1.

This is important to the estimation of J2 and J4. Since

h′(z) = − π2

4η2
csc2

(
πz

2η

)
,

we have |h′(η± iT )| � η−2e−πT/(2η). Therefore, |J2|+ |J4| → 0 as T →∞.

Parameterizing the line segments C1 and C3 with z = ±η+ 2ηiu
π and taking

real parts gives

<(J1 + J3) =
1

4η

∫ πT
2η

−πT2η

log
∣∣f (z0 − η + 2ηiu

π

)∣∣− log
∣∣f (z0 + η + 2ηiu

π

)∣∣
cosh2 u

du.

Recalling (2.1) and (2.2), this proves the lemma upon letting T →∞. �

3. Bounds for ζ(s)

Lemma 3.1. Suppose 1 < σ ≤ 1.06 and t is real. Then

1

ζ(σ)
≤ |ζ(σ + it)| ≤ ζ(σ) ≤ 0.6 +

1

σ − 1

and, for all σ > 1 and real t we have∣∣∣∣−ζ ′ζ (σ + it)

∣∣∣∣ < 1

σ − 1
.
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Proof. For the first line of inequalities, we start with

|ζ(σ + it)| ≤
∞∑
n=1

n−σ = ζ(σ)

and similarly

|ζ(σ + it)|−1 =

∣∣∣∣∣
∞∑
n=1

µ(n)n−σ−it

∣∣∣∣∣ ≤
∞∑
n=1

n−σ = ζ(σ).

Next, since x−σ is convex and e−y ≤ 1− y + 1
2y

2 for 0 ≤ y ≤ 1, we have

ζ(σ) ≤ 1 +

∫ ∞
3/2

du

uσ
= 1 +

(3/2)−(σ−1)

σ − 1

≤ 1 +
1

σ − 1
− log(1.5) + 1

2 (σ − 1) log2(1.5)

≤ 0.6 +
1

σ − 1
.

In fact, near σ = 1 we have ζ(σ) = 1
σ−1 + γ + O(σ − 1), where γ =

0.5772 · · · is the Euler-Mascheroni constant (see e.g. [23], (2.1.16)). The

last inequality in the lemma follows from | − ζ′

ζ (σ + it)| ≤ − ζ
′

ζ (σ) and

−ζ ′(σ) =

∞∑
n=1

 ∑
m≥n+1

m−σ

 log

(
n+ 1

n

)
<

∞∑
n=1

n1−σ

σ − 1

1

n
=

ζ(σ)

σ − 1
.

�

Lemma 3.2. For real u,∣∣∣∣ζ ′(− 1
2 + iu)

ζ(− 1
2 + iu)

∣∣∣∣ ≤ 4.62 +
1

2
log(1 + u2/9).

Proof. (Corrected July, 2022). By the functional equation for ζ(s) (cf. [6],
Ch. 12, (8)–(10)),

−ζ
′(w)

ζ(w)
=
ζ ′(1− w)

ζ(1− w)
−log π−γ−

∞∑
n=1

(
1

w + 2n
+

1

1− w + 2n
− 1

n

)
+

1

w(w − 1)
.

Now set w = − 1
2 + iu. A short numerical calculation shows that

max
u

∣∣∣∣− log π − γ +
1

(−1/2 + iu)(−3/2 + iu)

∣∣∣∣ ≤ 1.877

and that

|ζ ′(1− w)/ζ(w)| ≤ −ζ ′(3/2)/ζ(3/2) ≤ 1.506.
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Therefore,∣∣∣∣ζ ′(w)

ζ(w)

∣∣∣∣ ≤ 3.383 +

∞∑
n=1

∣∣∣∣ u2 + n− 3/4 + 2iu

n(4n2 + 2n− 3/4 + u2 + 2iu)

∣∣∣∣
≤ 4.383 +

∞∑
n=1

n− 3/4

n(4n2 + 2n− 3/4)
+

∞∑
n=2

|u2 + 2iu|
n(4n2 + u2)

≤ 4.542 + |u|
√
u2 + 4

∫ ∞
3/2

dx

x(4x2 + u2)

= 4.542 +

√
u2 + 4

2|u|
log(1 + u2/9)

≤ 4.62 + 1
2 log(1 + u2/9),

the last line following from another numerical calculation. �

Lemma 3.3. We have ∑
ρ

1

|ρ|2
≤ 0.0463,

where the sum is over all of the non-trivial zeros of ζ(s).

Proof. By ([6], Ch. 9, (10) an (11)), we have∑
ρ

<ρ
|ρ|2

= 1 + 1
2γ −

1
2 log(4π).

If ζ(ρ) = 0 then ζ(1− ρ) = 0, and the minimum of |=ρ| is > 14.1. Thus∑
ρ

1

|ρ|2
=
∑
ρ

(
<ρ
|ρ|2

+
<ρ

|1− ρ|2

)
≤
(

1 +
√

1 + 1/14.12
)∑

ρ

<ρ
|ρ|2

≤ 0.0463.

�

Lemma 3.4. Let us fix σ ∈ [ 12 , 1), and suppose for all t ≥ 3 we have

(3.1) |ζ(σ + iy)| ≤ XtY (log t)Z (1 ≤ |y| ≤ t),

where X, Y and Z are positive constants with Y + Z ≥ 0.1. If 0 < a ≤ 1
2 ,

t ≥ 100 and 1
2 ≤ σ ≤ 1− 1/t, then∫ ∞

−∞

log |ζ(σ + it+ iau)|
cosh2 u

du ≤ 2(logX + Y log t+ Z log log t).
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Proof. First, there is no difficulty if ζ(σ + it + iau) = 0 for some points
along the path of integration. Since all zeros have finite order, the integral
in the lemma always converges. When − 2t

a ≤ u ≤
−t−1
a , (3.1) gives |ζ(σ +

it+ iau)| ≤ XtY (log t)Z . For −t−1a ≤ u ≤ −t+3
a , we use the identity ([23],

(2.1.4))

ζ(s) =
1

s− 1
+

1

2
+ s

∫ ∞
1

bxc − x+ 1/2

xs+1
dx.

Writing s = σ + it + iau, it follows that |s − 1| ≥ 1/t and |s| ≤
√

10 and
thus log |ζ(s)| ≤ log(t + 4) for this range of u. For u ≥ 3−t

a , we use the

inequalities log(1 + x) ≤ x and log(1 + x) ≤ x− 1
2x

2 + 1
3x

3, both valid for
all x > −1. Then

log |ζ(σ + it+ iau)| ≤ logX + Y log(t+ au) + Z log log(t+ au)

≤ log(XtY (log t)Z) +

(
Y +

Z

log t

)(
au

t
− (au)2

2t2
+

(au)3

3t3

)
.

Similarly, using log(1 + x) ≤ x, for u ≤ − 2t
a

log |ζ(σ + it+ iau)| ≤ log(XtY (log t)Z) +

(
Y +

Z

log t

)(
−au− 2t

t

)
.

Combining these estimates together with
∫∞
−∞(coshu)−2 du = 2 yields

∫ ∞
−∞

log |ζ(σ + it+ iau)|
cosh2 u

du ≤ 2(logX + Y log t+ Z log log t) + E,

where

E =
4 log(t+ 4)

a cosh2
(
3−t
a

)
+

(
Y +

Z

log t

)(∫ − 2t
a

−∞

−au− 2t

t cosh2 u
du+

∫ ∞
3−t
a

au
t −

(au)2

2t2 + (au)3

3t3

cosh2 u
du

)
.

Now 1
4e

2|u| ≤ cosh2 u ≤ e2|u|, a ≤ 1
2 and t ≥ 100. Hence

ae(t−6)/a ≥ 2e2t−12.
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Therefore

E ≤ 16 log(t+ 4)

ae2(t−3)/a
+

(
Y +

Z

log t

)(
4a
t e
−4t/a

∫ ∞
0

ve−2v dv

+

∫ ∞
−∞

au
t −

(au)2

2t2 + (au)3

3t3

cosh2 u
du+

∫ ∞
t−3
a

au
t + (au)2

2t2 + (au)3

3t3

1
4e

2u
du

)
≤ 32 log(t+ 4)

et/a+2t−12 +

(
Y +

Z

log t

)(
e−4t/a

t
− π2a2

12t2
+

8a3

t3

∫ ∞
2t−6

u3e−2u du

)
≤ e−t/a +

(
Y +

Z

log t

)(
e−4t/a − π2

12

a2

t2
+ 48a3e−4t+12

)
≤ e−t/a − 0.1

log t

a2

2t2

≤ 0.

�

4. Detecting zeros of ζ(s)

From now on, ρ will denote a zero of ζ(s) and in summations over the

zeros, each zero is counted according to its multiplicity. Since ζ(s) = ζ(s̄),
when proving zero-free regions we restrict our attention to the upper half
plane.

Lemma 4.1. Suppose (1.2) holds. Let s = σ + it, η > 0, σ − η ≥ 1/2,
1 ≤ σ ≤ 1 + η and t ≥ 100. If S is any subset of {z : σ − η ≤ <z ≤ 1},
then

−< ζ
′(s)

ζ(s)
≤ −

∑
ρ∈S,ζ(ρ)=0

< π

2η
cot

(
π(s− ρ)

2η

)

+
1

2η

(
2

3
log log t+B(1− σ + η)3/2 log t+ logA

)
− 1

4η

∫ ∞
−∞

log |ζ(s+ η + 2ηiu/π)|
cosh2 u

du.

Proof. We apply Lemma 2.2 with f = ζ and z0 = s, noting that ζ(0) 6= 0,
all zeros have real part < 1 and that < cot z ≥ 0 for 0 ≤ <z ≤ π

2 . Thus the
right side in the conclusion of Lemma 2.2 is increased if we omit from the
sum any subset of the zeros. Then we apply (1.2) and Lemma 3.4 (with
X = A, Y = B(1− σ + η)3/2, Z = 2/3, a = 2η/π) to the integral over the
line <z = σ−η. Note also that the integral on the right side in Lemma 4.1
always converges by Lemma 3.1. Therefore, if η is “bad” with respect to
Lemma 2.2, we can apply the above argument with a sequence of numbers
η′ tending to η from above. �
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We next require an upper bound on the number of zeros close to a point
1 + it. Here N(t, R) denotes the number of zeros ρ with |1 + it− ρ| ≤ R.

Lemma 4.2. Assume (1.2) holds with A > 1 and B > 0. Then, for
0 < R ≤ 1/4, t ≥ 100,

N(t, R) ≤ 1.3478R3/2B log t+ 0.49 +
logA− logR+ 2

3 log log t

1.879
.

Proof. Apply Lemma 4.1 with s = 1 + 0.6421R + it, η = 2.5R (so that
σ − η ≥ 1

2 ) and S = {z : |1 + it− z| ≤ R,<z ≤ 1}. These parameters were
chosen to minimize the first term on the right side of the inequality in the
lemma. By Lemma 3.1, if v is real then∣∣∣∣ζ ′ζ (s+ η + iv)

∣∣∣∣ ≤ 1

3.1421R
,

|ζ(s+ η + iv)|−1 ≤ ζ(1 + 3.1421R) ≤ 0.6 +
1

3.1421R
.

(4.1)

Next, in the region U = {z : <z ≥ 0.6421, |z − 0.6421| ≤ 1}, we prove

(4.2) <π
5

cot
(πz

5

)
≥ 0.3758.

By the maximum modulus principle, it suffices to prove (4.2) on the bound-
ary of U . Using

< cot(x+ iy) =
2 sin(2x)

e2y + e−2y − 2 cos(2x)
,

the minimum of < cot(x + iy) on the vertical segment x = 0.6421π/5,
|y| ≤ π/5 occurs at the endpoints. On the semicircular part of the boundary
of U , we verified (4.2) by a short computation using the computer algebra
package Maple. In particular, the relative minima on the boundary of U
occur at z = 1.6421 and z = 0.6421 ± i. Therefore, by (4.1), (4.2) and
Lemma 4.1,

− 1

3.1421R
≤ −0.3758

N(t, R)

R
+

1

5R

(
2

3
log log t+

(1.8579R)3/2B log t+ logA+ log
(
0.6 + 1

3.1421R

))
.

Since log(0.6 + 1
3.1421R ) ≤ − log(3.1421R) + 1.88526R ≤ − logR − 0.6735,

the lemma follows. �

Remark. A qualitatively similar result may also be proved, in a similar
way, from Lemma 2 of [8], or from Landau’s lemma (§3.9 of [23]).
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Lemma 4.3. Suppose t ≥ 10000, 0 < v ≤ 1/4, and (1.2) holds with A > 1,
B > 0. Then∑
|1+it−ρ|≥v

1

|1 + it− ρ|2
≤ (6.132 + 5.392B(v−1/2 − 2)) log t+ 13.5

− 8.5 logA+ 4 log log t+

logA−log v+2
3 log log t

1.879 + 0.224−N(t, v)

v2
.

Proof. Divide the zeros with |1 + it− ρ| ≥ v into three sets:

Z1 = {ρ : |=ρ− t| ≥ 1},
Z2 = {ρ 6∈ Z1 : |1 + it− ρ| ≥ 1

4 and |it− ρ| ≥ 1
4},

Z3 = {ρ : ρ 6∈ Z2, ρ 6∈ Z1 and |1 + it− ρ| ≥ v}.

For i = 1, 2, 3, let Si be the sum over ρ ∈ Zi of |1 + it− ρ|−2. By Theorem
19 of [18], the number, N(T ), of nontrivial zeros of ζ(s) with imaginary
part in [0, T ] satisfies

(4.3) N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+Q(T ),

where

|Q(T )| ≤ 0.137 log T + 0.443 log log T + 1.588 (T ≥ 2).

Since there are no zeros ρ with |=ρ| ≤ 14,

S1 ≤
∫ ∞
t+1

dN(u)

(u− t)2
+

∫ t−1

14

dN(u)

(t− u)2
+

∫ ∞
14

dN(u)

(u+ t)2
= I1 + I2 + I3.

Since dN(u) = 1
2π log u

2π +dQ(u), log(t+x) ≤ log t+ x
t and log log(t+x) ≤

log log t+ x
t log t , we have

I1 ≤
1

2π

∫ ∞
1

log(t+ x)− log 2π

x2
dx+ |Q(t+ 1)|+ 2

∫ ∞
1

|Q(t+ x)|
x3

dx

=

(
1 + 1

t

)
log(1 + t)− log(2π)

2π
+ |Q(t+ 1)|+ 2

∫ ∞
1

|Q(t+ x)|
x3

dx

≤ 0.4332 log t+ 0.886 log log t+ 2.884 + 2

∫ ∞
1

0.1851x/t

x3
dx

≤ 0.4332 log t+ 0.886 log log t+ 2.885.

Similarly, noting that Q(14) ≥ 0, we get

I2 ≤
1

2π
log

(
t

2π

)
+ 2 max

14≤u≤t−1
|Q(u)|

≤ 0.4332 log t+ 0.886 log log t+ 2.884
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and

I3 ≤
1

2π

∫ ∞
14

log
(
u+t
2π

)
(u+ t)2

du+ 2

∫ ∞
14

|Q(u)|
(u+ t)3

du ≤ 0.00014.

Thus

(4.4) S1 ≤ 0.8664 log t+ 1.772 log log t+ 5.77.

Next let N2 = |Z2| and N3 = |Z3|. By (4.3),

N2 +N3 = N(t+ 1)−N(t− 1)−N(t, v)

≤ 0.59231 log t+ 0.886 log log t+ 2.591−N(t, v).
(4.5)

In the sum S2, each zero on the critical line contributes ≤ 4 and each pair
of zeros ρ = β + iγ, ρ′ = 1 − β + iγ with β > 1/2 contributes at most
42 + (4/3)2 to the sum. Therefore,

S2 ≤
80N2

9
.

For S3, N(t, 1/4) of the zeros contribute at most (4/3)2 each, since N3 +
N(t, v) = 2N(t, 1/4). By partial summation,

S3 ≤
16N(t, 1/4)

9
+

∫ 1/4

v

dN(t, u)

u2

=
160

9
N(t, 1/4)− N(t, v)

v2
+ 2

∫ 1/4

v

N(t, u)

u3
du

=
80N3

9
+

(
80

9
− 1

v2

)
N(t, v) + 2

∫ 1/4

v

N(t, u)

u3
du.

By Lemma 4.2,

2

∫ 1/4

v

N(t, u)

u3
du ≤

(
logA+ 2

3 log log t

1.879
+ 0.49

)(
v−2 − 16

)
+ 5.3912B

(
v−1/2 − 2

)
log t+

1

1.879

(
8− 16 log 4− 1 + 2 log v

2v2

)
.

Therefore, using (4.5), we obtain

S2 + S3 ≤ (5.2650 + 5.3912B(v−1/2 − 2)) log t+ 2.2 log log t− 8.5 logA

+ 7.65 +
1

v2

(
logA− log v + 2

3 log log t

1.879
+ 0.224

)
− N(t, v)

v2
.

Combining this with (4.4) gives the lemma. �

Lemma 4.4. Suppose that <z ≥ 0 and |z| ≤ π/2. Then

<
(

cot z − 1

z
+

4z

π2

)
≥ 0.
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Proof. By the maximum modulus principle it suffices to prove the inequal-
ity on the boundary of the region. On the vertical segment z = iy,
−π/2 ≤ y ≤ π/2, the left side is zero. When |z| = π/2, z = x + iy
and x ≥ 0, the left side is

2 sin(2x)

e2y + e−2y − 2 cos(2x)
− x

x2 + y2
+

4x

π2
=

2 sin(2x)

e2y + e−2y − 2 cos(2x)
≥ 0.

This proves the lemma. �

The next two lemmas are related to Heath-Brown’s method for detecting
zeros from [9]. These give bounds for a “mollified” sum, similar to Lemmas
5.1 and 5.2 of [9].

Lemma 4.5. Suppose f is a non-negative real function which has contin-
uous derivative on (0,∞). Suppose the Laplace transform

F (z) =

∫ ∞
0

f(y)e−zy dy

of f is absolutely convergent for <z > 0. Let F0(z) = F (z) − f(0)/z and
suppose

(4.6) |F0(z)| ≤ D

|z|2
(< z ≥ 0, |z| ≥ η),

where 0 < η ≤ 3
2 . If <s > 1 and =s ≥ 0, then

K(s) :=

∞∑
n=1

Λ(n)n−sf(log n)

= −f(0)
ζ ′(s)

ζ(s)
−
∑
ρ

F0(s− ρ) + F0(s− 1) + E,

where |E| ≤ D(1.72 + 1
3 log(1 + =s)).

Proof. We follow the proof of Lemma 5.1 of [9]. Suppose s = σ + it and
1 < α < σ. Define

I =
1

2πi

∫ α+i∞

α−i∞
−ζ
′(w)

ζ(w)
F0(s− w) dw.

Since−ζ ′(w)/ζ(w) =
∑
n Λ(n)n−w, the sum converging uniformly on <w =

α, we may integrate term by term. Thus I =
∑
n Λ(n)Jn, where

Jn =
1

2πi

∫ α+i∞

α−i∞
n−wF0(s− w) dw =

n−s

2πi

∫ σ−α+i∞

σ−α−i∞
nuF0(u) du.

The integral on the right converges absolutely by (4.6). Since

F0(z) =
1

z

∫ ∞
0

e−zyf ′(y) dy,
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we have

Jn =
n−s

2πi

∫ ∞
0

f ′(y)

∫ σ−α+i∞

σ−α−i∞

(ne−y)u

u
du dy

= n−s
∫ logn

0

f ′(y) dy = n−s (f(log n)− f(0)) .

Thus

(4.7) I = K(s) + f(0)
ζ ′(s)

ζ(s)
.

Moving the line of integration to <w = −1/2, we have

(4.8) I =
1

2πi

∫ −1/2+i∞
−1/2−i∞

−ζ
′(w)

ζ(w)
F0(s−w) dw−

∑
ρ

F0(s− ρ) +F0(s− 1).

By (4.6) and Lemma 3.2, the integral in (4.8) is ≤ D
2π I
′, where

I ′ ≤
∫ ∞
−∞

4.62 + 1
2 log(1 + u2/9)

9/4 + (u− t)2
du

= 3.08π +
1

3

∫ ∞
−∞

log(1 + (t/3 + v/2)2)

1 + v2
dv

≤ 3.08π +
1

3

∫ ∞
−∞

log(1 + t2) + log(1 + v2)

1 + v2
dv

≤ 10.8 +
2π log(1 + t)

3
.

The lemma now follows from (4.7) and (4.8). �

Remarks. Examples of functions f satisfying the conditions of Lemma
4.5 are those with compact support (say [0, x0]) and with f ′′ continuous
and bounded on (0, x0). These are the functions considered in [9]. To
see that (4.6) holds, apply integration by parts twice, noting that f(x0) =
f ′(x0) = 0. This gives

F0(z) = z−2
(
f ′(0+) +

∫ x0

0

e−ztf ′′(t) dt

)
.

Lemma 4.6. Suppose 0 < η ≤ 1
2 and (1.2) holds with A > 1, B > 0. Let

f have compact support and satisfy (4.6). Suppose s = 1+it with t ≥ 1000.
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Then

<K(s) ≤ −
∑

|1+it−ρ|≤η

<
{
F (s− ρ) + f(0)

(
π

2η
cot

(
π(s− ρ)

2η

)
− 1

s− ρ

)}

+
f(0)

2η

[
2 log log t

3
+Bη3/2 log t+ logA− 1

2

∫ ∞
−∞

log |ζ(s+ η + 2ηui
π )|

cosh2 u
du

]

+D

1.8 +
log t

3
+

∑
|1+it−ρ|≥η

1

|1 + it− ρ|2

 .

In addition,

K(1) ≤ F (0) + 1.8D.

Proof. Suppose that σ > 1. By Lemma 4.5,

K(σ) ≤ −f(0)
ζ ′(σ)

ζ(σ)
+ F0(σ − 1) + 1.72D +D

∑
ρ

1

|1− ρ|2
.

Since ζ(ρ) = 0 implies ζ(1− ρ) = 0, we may replace |1− ρ|2 by |ρ|2 in the
last sum. Using Lemmas 3.1 and 3.3, we obtain

K(σ) ≤ f(0)

σ − 1
+ F0(σ − 1) + 1.8D

= F (σ − 1) + 1.8D.
(4.9)

When t ≥ 1000 and s = σ+ it, <F0(s− 1) ≤ |F0(s− 1)| ≤ Dt−1 ≤ 0.001D.
Also by (4.6), ∑

|1+it−ρ|>η

|F0(s− ρ)| ≤ D
∑

|1+it−ρ|>η

1

|1 + it− ρ|2
.

Therefore, combining Lemma 4.1 (with S = {z : <z ≤ 1, |1 + it− z| ≤ η})
and Lemma 4.5 gives

<K(s) ≤ −
∑

|1+it−ρ|≤η

<
{
F (s− ρ) + f(0)

(
π

2η
cot

(
π(s− ρ)

2η

)
− 1

s− ρ

)}

+
f(0)

2η

[
2

3
log log t+Bη3/2 log t+ logA− 1

2

∫ ∞
−∞

log |ζ(s+ η + 2ηui
π )|

cosh2 u
du

]

+D

1.8 +
log t

3
+

∑
|1+it−ρ|>η

1

|1 + it− ρ|2

 .

(4.10)

Since f has compact support, K(s) and F (s) are both entire functions.
Also, on the right side of (4.10), | log |ζ(α + iβ)|| ≤ | log ζ(α)| when α > 1
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(by Lemma 3.1). Thus we may let σ → 1+ in (4.9) and (4.10), and this
proves the lemma. �

5. A trigonometric inequality

We use a trigonometric inequality that is very similar to what is used in
standard treatments. For any real numbers a1, a2 we have

(5.1)

4∑
j=0

bj cos(jθ) = 8(cos θ + a1)2(cos θ + a2)2 ≥ 0 (θ ∈ R),

where

b4 = 1, b3 = 4(a1 + a2), b2 = 4(1 + a21 + a22 + 4a1a2),

b1 = (a1 + a2)(12 + 16a1a2), b0 = b2 − 1 + 8(a1a2)2.
(5.2)

Lemma 5.1. Suppose a1, a2 are real numbers and define b0, . . . , b4 by (5.2).
Suppose that η > 0 and t1, t2 are real numbers. Then∫ ∞

−∞

1

cosh2 u

4∑
j=1

bj log |ζ (1 + η + ijt1 + iut2)| du ≥ −2b0 log ζ(1 + η).

Remark. Lemma 5.1 marks a departure from other treatments, where
the bound |ζ(1 +η+ iw)| ≥ ζ(1 +η)−1 is used at the outset (in the context
of a different integral), which in our situation gives

I ≥ −2(b1 + · · ·+ b4) log ζ(1 + η).

The new idea is to combine the log |ζ(·)| terms using (5.1) to significantly
reduce this part of the estimation. The idea in Lemma 6.1 accounts for
the majority of the improvement over Heath-Brown’s zero-free region. See
also the remarks at the end of section 8.

Proof. Denote by I the integral in the lemma. We begin with the Euler
product representation for ζ(s) in the form

(5.3) log |ζ(s)| = −<
∑
p

log(1− p−s) = <
∑
p

m≥1

1
mp
−ms (<s > 1).

Next, if y 6= 0,

(5.4) U(y) :=

∫ ∞
−∞

eiyu

cosh2 u
du =

πy

sinh(πy/2)
≥ 0,
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which can be proved by contour integration. By (5.2), (5.3) and (5.4),

I =
∑
p,m

1
mp
−m(1+η)<

 4∑
j=1

bjp
−ijmt1

∫ ∞
−∞

p−imut2

cosh2 u
du


=
∑
p,m

1
mp
−m(1+η)U(mt2 log p)

4∑
j=1

bj cos(jmt log p)

≥ −b0
∑
p,m

1
mp
−m(1+η)U(mt2 log p).

Since U(y) ≤ 2 for all y, we obtain I ≥ −2b0 log ζ(1 + η), as claimed. �

6. The functions f , F and K

Suppose that t ≥ 10000, ζ(β + it) = 0 and λ is a number with 0 < λ ≤
1− β such that

(6.1) ζ(s) 6= 0 (1− λ < <s ≤ 1, t− 1 ≤ =s ≤ 4t+ 1).

Let f be a function with compact support, define F , F0 and K as in
Lemma 4.5, and assume that (4.6) holds. Let a1, a2 be real numbers and
define b0, . . . , b4 by (5.2). Put b5 = b1 + b2 + b3 + b4. By (5.1),

(6.2) <
4∑
j=0

bjK(1 + ijt) =

∞∑
n=1

Λ(n)n−1f(log n)

4∑
j=0

bj cos(jt log n) ≥ 0.

We next apply Lemma 4.6 with s = 1 and s = 1 + ijt (j = 1, 2, 3, 4).
Together with Lemma 5.1 (with t2 = 2η

π ) and (6.2), this gives

0 ≤−<
∑

1≤j≤4
|1+ijt−ρ|≤η

bj

(
F (1 + ijt− ρ) + f(0)

(
π
2η cot

(
π(1+ijt−ρ)

2η

)
− 1

1+ijt−ρ

))

+
f(0)

2η

[
b5

(
2
3L2 +Bη3/2L1 + logA

)
+ b0 log ζ(1 + η)

]
+ b0F (0)

+D

(
b5
(
1.8 + L1

3

)
+ 1.8b0 +

4∑
j=1

bj
∑

|1+ijt−ρ|≥η

1

|1 + ijt− ρ|2

)
,

(6.3)

where for brevity we write

L1 = log(4t+ 1), L2 = log log(4t+ 1).
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We choose a function f which is based on the functions given by Lemma
7.5 of [9]. Let θ be the unique solution of

(6.4) sin2 θ =
b1
b0

(1− θ cot θ), 0 < θ < π/2,

and define the real function

(6.5) g(u) =

{
(cos(u tan θ)− cos θ) sec2 θ |u| ≤ θ

tan θ ,

0 else.

Set w(u) = g ∗ g(u) (the convolution square of g) for u ≥ 0 and

W (z) =

∫ ∞
0

e−zuw(u) du.

From (6.5) we deduce (cf. Lemma 7.1 of [9]) the identities

W (0) = 2 sec2 θ(1− θ cot θ)2,

W (−1) = 2 tan2 θ + 3− 3θ(tan θ + cot θ),

w(0) = sec2 θ(θ tan θ + 3θ cot θ − 3).

(6.6)

Then we take (see (6.1))

(6.7) f(u) = λeλuw(λu) (u ≥ 0)

and

(6.8) F (z) =

∫ ∞
0

e−zuf(u) du = W
( z
λ
− 1
)
.

For real y,

<W (iy) = 2

(∫ ∞
0

w(u) cos(uy) du

)2

≥ 0.

Since W (z) → 0 uniformly as |z| → ∞ and <z ≥ 0, it follows from the
maximum modulus principle (applied to e−W (z)) that

(6.9) <W (z) ≥ 0 (<z ≥ 0).

7. An inequality for the real part of a zero

In this section, we take specific values for a1 and a2 and prove the
following inequality.

Lemma 7.1. Suppose t ≥ 10000, ζ(β + it) = 0 and (6.1) holds. Suppose
further that (1.2) holds with B > 0 and A > 6.5, and that

(7.1) 1− β ≤ η/2, 0 < λ ≤ min
(
1− β, 1

250η
)
.
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Then

1

λ

[
0.16521− 0.1876

(
1−β
λ − 1

)]
≤ 1.471

1− β
η2

+
1

2η

[
666550
200211

(
2
3L2 +Bη3/2L1 + logA

)
+ log ζ(1 + η)

]
+ 3.683λ

[
(6.466 + 5.392B(η−

1
2 − 2))L1 + 4L2 +

log(A/η)+ 2
3L2

1.879 + 0.224

η2

]
.

Proof. A near optimal choice of parameters is a1 = 0.225, a2 = 0.9. By
(5.2),

b0 = 10.01055 b3 = 4.5,

b1 = 17.14500 b4 = 1.0,

b2 = 10.68250 b5 = 33.3275,

and by (6.4) and (6.6),

θ = 1.152214629976363048877 . . . , w(0) = 6.82602968445295450905 . . . .

The function W (z) has the explicit formula (found with the aid of Maple)

(7.2) W (z) =
w(0)

z
+W0(z),

where

(7.3) W0(z) =
c0
(
c2((z + 1)2e−2(θ/ tan θ)z + z2 − 1) + c1z + c3z

3
)

z2(z2 + tan2 θ)2

and

c0 =
1

sin θ cos3 θ
= 16.2983216223932350562 . . .

c1 = (1 + 2(θ cos θ − sin θ) cos θ) tan4 θ = 16.2878103682166631825 . . .

c2 = tan3 θ sin2 θ = 9.4813169452950521682 . . .

c3 = (2− 5 sin θ cos θ + θ + 4θ cos2 θ) tan2 θ = 10.3924962150333624895 . . .

If R ≥ 3, (7.3) implies

(7.4) |W0(z)| ≤ H(R)

|z|3
(<z ≥ −1, |z| ≥ R),

where

H(R) =
c0

(
c2

(R+1)2

R3

(
e2θ/ tan θ + 1

)
+ c1

R2 + c3

)
(

1− tan2 θ
R2

)2 .
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By (6.7), (6.8) and (7.2),

F0(z) = F (z)− f(0)

z
= W

( z
λ
− 1
)
− λw(0)

z

= W0

( z
λ
− 1
)

+
λf(0)

z(z − λ)
.

Suppose <z ≥ 0 and |z| ≥ (R+ 1)λ. Writing z′ = z
λ −1, we have <z′ ≥ −1

and |z′| ≥ R. Thus, by (6.7) and (7.4), we obtain

|F0(z)| ≤ H(R)λ3

|z − λ|3
+

w(0)λ2

|z(z − λ)|
≤ c4

λf(0)

|z|2
,

where

(7.5) c4 =
H(R)(R+ 1)2

R3w(0)
+ 1 + 1/R.

Therefore, providing that η ≥ (R+ 1)λ, (4.6) holds with

(7.6) D = c4λf(0).

Next, define

Vc(z) = cw(0)
(
cot z − 1

z

)
+W

(
z
c − 1

)
.

By (6.7) and (6.8),

F (1 + ijt− ρ) + f(0)
(
π
2η cot

(
π(1+ijt−ρ)

2η

)
− 1

1+ijt−ρ

)
= Vc(z),

where z = π
2η (1 + ijt − ρ) and c = πλ

2η . In order to bound the first double

sum in (6.3) (leaving only the single term corresponding to ρ = β+ it), we
prove that for 0 < c ≤ π

2R+2 ,

(7.7) <Vc(z) ≥ −c5c2w(0)
(
<z ≥ c, |z| ≤ π

2

)
.,

where

(7.8) c5 =
4

π2

(
1 +

(R+ 1)2H(R)

w(0)R3

)
=

4

π2
(c4 − 1/R).

By the maximum modulus principle (applied to e−Vc(z)), it suffices to prove
(7.7) on the boundary of the region. First consider z satisfying <z = c,
|z| ≤ π/2. By Lemma 4.4 and (6.9),

<Vc(z) ≥ cw(0)<
(

cot z − 1

z

)
≥ −4c2w(0)

π2
.
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When |z| = π/2 and x = <z ≥ c, we have |z/c − 1| ≥ R, so by (7.4),
|W0(z/c− 1)| ≤ H(R)|z/c− 1|−3. Thus, by (7.2) and Lemma 4.4,

<Vc(z) ≥ −
4cw(0)x

π2
+
cw(0)(x− c)
|z − c|2

− H(R)c3

|z − c|3

≥ −4cw(0)x

π2
+
cw(0)(x− c)

(π/2)2
− H(R)c3

(π/2− c)3

= c2w(0)

(
− 4

π2
− H(R)c

w(0)(π/2− c)3

)
.

Noting that c ≤ π
2R+2 completes the proof of (7.7). In fact, with more

work one can prove that (7.7) holds with c5 = 1
3 .

By (7.7), we have

−<
∑

1≤j≤4
|1+ijt−ρ|≤η

bj

(
F (1 + ijt− ρ) + f(0)

(
π
2η cot

(
π(1+ijt−ρ)

2η

)
− 1

1+ijt−ρ

))

≤ −b1Vc( π2η (1− β)) + c5c
2w(0)

4∑
j=1

bjN(jt, η).

Combining this last estimate with (6.3), (6.7), (7.6) and Lemma 4.3 gives

0 ≤ b0F (0)− b1Vc
(
π
2η (1− β)

)
+
λf(0)

η2

(
π2c5
4 − c4

) 4∑
j=1

bjN(jt, η)

+
f(0)

2η

[
b5

(
2
3L2 +Bη3/2L1 + logA

)
+ b0 log ζ(1 + η)

]
+ c4λf(0)b5

[
1.8 + L1

3 + 1.8 b0b5 +
(
6.132 + 5.392B(η−

1
2 − 2)

)
L1

+ 13.5− 8.5 logA+ 4L2 +
1

η2

(
logA− log η + 2

3L2

1.879
+ 0.224

)]
.

(7.9)

The sum in (7.9) can be ignored because of (7.8). Also, by the lower bound
on A we have

(7.10) 1.8 + 1.8 b0b5 + 13.5− 8.5 logA < 0.

Put R = 249, and compute H(249) ≤ 171.8 and c4 ≤ 1.106. Since cotx−
1
x ≥ −0.348x for 0 < x ≤ π

4 and 1− β ≤ 1
2η, we have

(7.11) Vc

(
π
2η (1− β)

)
≥ F (1− β)− 0.348f(0) π

2

4η2 (1− β).
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By (6.6), (6.7) and (6.8),

−b1
b0
F (1−β) + F (0) = −

(
b1
b0
W
(

1−β
λ − 1

)
−W (−1)

)
= −

(
b1
b0
W (0)−W (−1)

)
+
b1
b0

(
W (0)−W

(
1−β
λ − 1

))
=
−f(0) cos2 θ

λ
+
b1
b0

(
W (0)−W

(
1−β
λ − 1

))
.

(7.12)

Since W (x) and W ′(x) are both decreasing, we have

W (0)−W
(

1−β
λ − 1

)
≤
(

1−β
λ − 1

)
W ′(0) ≤ 0.7475

(
1−β
λ − 1

)
.

Thus, by (7.11) and (7.12),

F (0)− b1
b0
Vc

(
π
2η (1− β)

)
≤ 0.348f(0)

π2

4η2
b1
b0

(1− β)

+
f(0)

λ

(
− cos2 θ +

0.7475b1
b0w(0)

(
1−β
λ − 1

))
.

(7.13)

Dividing both sides of (7.9) by b0f(0) and using (7.10), (7.13) and the
numerical values of b0, b1, b5 and θ completes the proof of the lemma. �

8. The proof of Theorem 2

Suppose T0 satisfies the hypotheses of Theorem 2 and let

(8.1) M = inf
ζ(β+it)=0
t≥T0

Z(β, t), Z(β, t) := (1− β)(B log t)
2
3 (log log t)

1
3 .

By the Korobov-Vinogradov theorem, M > 0. If M ≥ M1, then the
theorem is immediate. Otherwise, suppose that M < M1 ≤ 0.05507. Then
there is a zero β + it of ζ(s) with t ≥ T0 and

Z(β, t) ∈ [M,M(1 + δ)], δ = min
(

10−100

log T0
, M1−M

2M

)
.

By (8.1), (6.1) holds with

(8.2) λ = ML
−2/3
1 L

−1/3
2 B−2/3.

Again we make the abbreviations L1 = log(4t + 1), L2 = log log(4t + 1).
Define b0, b5 as in the previous section. We apply Lemma 7.1, taking

(8.3) η = EB−
2
3

(
L2

L1

) 2
3

, E =

(
4(1 + b0/b5)

3

) 2
3

=

(
1733522

999825

) 2
3

.
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The lower bound log T0

log log T0
≥ 1740

B ensures that η ≤ 0.01 and

λ ≤ 0.5507(BL1)−
2
3L
− 1

3
2 ≤ η

250
.

The inequalities T0 ≥ e30000 and M1 ≤ 0.05507 ensure that the other
hypotheses of Lemma 7.1 are met. In addition,

(8.4)
1− β
λ
− 1 ≤ (1 + δ)

(
L1

log t

) 2
3
(

L2

log log t

) 1
3

− 1 ≤ 0.97

log T0
.

By Lemma 3.1,

(8.5) log ζ(1 + η) ≤ log(1/η + 0.6) ≤ log(1/η) + 0.006.

We now apply Lemma 7.1, using the upper bounds for (1−β) and λ on the
right side of the conclusion. First, since − log η ≈ 2

3L2, we have by (8.3),

1

2η

[
b5
b0

(
2L2

3
+Bη

3
2L1

)
+

2L2

3

]
=
b5
b0

(
1 +

b0
b5

) 1
3
(

3B

4

) 2
3

L
2
3
1 L

1
3
2

≤ 2.99968(BL1)
2
3L

1
3
2 .

(8.6)

This constitutes the main term as t → ∞. Next, since Z(β, t) ≤ M1 and
by the lower bound on T0,

(8.7) 1.471
1− β
η2

≤ 0.039B2/3L
2/3
1 L

−5/3
2 ≤ 0.0038B2/3

(
L1

L2

)2/3

.

Using (8.5), the remaining part of the second line in the conclusion of
Lemma 7.1 is

≤ 1

2η

[
b5
b0

logA− logE + 2
3 log(B/L2) + 0.006

]
≤ B

2
3

2E

(
L1

L2

) 2
3 [

3.3293 logA− 0.3608 + 2
3 log(B/L2)

]
≤
(
BL1

L2

) 2
3

(1.1534 logA− 0.125 + 0.2310 log(B/L2)) .

(8.8)
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By (8.2), (8.3), and L2 ≤ 0.00035L1, the third line in the conclusion of
Lemma 7.1 is

≤ 0.2029L
− 2

3
1 L

− 1
3

2 B−
2
3

[(
6.468 +

5.392B
4
3

√
E

(
L1

L2

) 1
3

− 10.784B

)
L1

+
B

4
3

E2

(
L1

L2

) 4
3
(

logA+ 4
3L2 + 2

3 log(B/L2)− logE

1.879
+ 0.224

)]
≤
(
BL1

L2

) 2
3
[
0.9798 +

1.313− 2.188B

B
4
3

(
L2

L1

) 1
3

+
0.05185

L2

(
logA+ 2

3 log(B/L2) + 0.05401
)]

≤
(
BL1

L2

)2
3
[
1.313− 2.188B

B4/3

(
L2

L1

) 1
3

+ 0.0051(logA+ 2
3 log( BL2

)) + 0.9801

]

(8.9)

Combining (8.4)–(8.9) with Lemma 7.1 gives

1

λ

(
0.16521− 0.182

log T0

)
≤ (BL1)

2
3L

1
3
2

(
2.99968 + X(t)

L2

)
.

By (8.2), this gives

M ≥ 0.16521− 0.182/ log T0
2.99968 +X(t)/ log log t

≥M1.

This concludes the proof of Theorem 2.

Remarks. Compared with the methods in [8], there are two improve-
ments evident in (8.6). First, the factor (3/4)2/3 ≈ 0.82548 replaces the
factor 2−1/3K2 ≈ 0.843445 from ([8], p. 197). This improvement comes
from integrating over two vertical lines (Lemma 2.2). The second and larger
improvement is the factor (1 + b0/b5)1/3, which is 21/3 in the treatment of
[8], and comes from combining the log |ζ(·)| terms in Lemma 5.1. Together
these improve the bounds from [8] by about 17%.

9. The proof of Theorem 3

Almost everything in Sections 2–6 is identical. In place of (1.2) we use
an explicit form of the Van der Corput bound (1.6). We fix η = 1

2 , and the
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proof of Lemma 5.1 gives

−
∫ ∞
−∞

∑4
j=1 bj log |ζ

(
3
2 + ijt+ iu

π

)
|

cosh2 u
du ≤ b0

∑
p,m

1
mp
− 3

2mU(mπ log p)

= 2b0
∑
p,m

log p

p2m − pm

= 2b0

∞∑
n=2

Λ(n)

n2 − n
≤ 1.702b0.

(9.1)

Let T0 = 545000000 and suppose that ζ(β+it) = 0 with t ≥ T0 (it is known
that all zeros with |t| < T0 have real part 1

2 [14]). In place of Lemma 3.4
we use

Lemma 9.1. If t ≥ T0, then

I(t) =

∫ ∞
−∞

log |ζ(1/2 + it+ iu/π)|
cosh2 u

du ≤ 2J(t),

where J(t) is given by (1.7).

Proof. From (1.6), |ζ(1/2 + it)| ≤ 3t1/6 log t for t ≥ 3, so by Lemma 3.4,
I(t) ≤ 2( 1

6 log t+ log log t+ log 3). Using the first inequality from (1.6), we
have

I(y) ≤
∫ ∞
−∞

log(57 + 6(t+ |u|)1/4)

cosh2 u
du = 2

∫ ∞
0

log(57 + 6(t+ u)1/4)

cosh2 u
du.

When 0 ≤ u ≤ log t, the numerator is ≤ log(6.37306t1/4) and when u >
log t, the numerator is ≤ log(6.4(eu + u)1/4) ≤ u and the denominator is
≥ 1

4e
2u. Therefore,

I(t) ≤ 2 log(6.37306t1/4) + 8

∫ ∞
log t

ue−2u du ≤ log t

2
+ 3.7042.

�

We make the assumption (6.1) as before and take the same values for
a1, a2 (so b0, . . . , b4, θ, w, f , F , W are the same as in section 7). The only
change in (6.3) is that the term 2

3 log log t+Bη3/2 log t+ logA is replaced
by J(t). Next, we follow the proof of Lemma 7.1. Using (4.3) (Rosser’s
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theorem) as in the proof of Lemma 4.3, we obtain for t ≥ 10000

(9.2)
∑

|1+ijt−ρ|≥ 1
2

1

|1 + ijt− ρ|2
≤ 3.2357 log t+ 5.316 log log t

+ 16.134− 4N(t, 1/2).

Assume that

(9.3) 0 < λ ≤ 1− β ≤ 1

160
.

Let R = 1
2(1−β) − 1 ≥ 79. By (9.3), η ≤ 80λ. As in the proof of (7.5), we

deduce that (4.6) holds with

(9.4) D = c4λf(0), c4 =
H(79)(R+ 1)2

R3w(0)
+ 1 +

1

R
≤ 1.35.

Also, (7.7) is replaced by

(9.5) <Vc(z) ≥ −c5c2w(0) = −c5π2λf(0) (<z ≥ c, |z| ≤ π/2),

valid for 0 < c ≤ π(1− β) with

(9.6) c5 =
4

π2
+

π(1− β)H(79)

w(0)(π/2− π(1− β))2
.

Analogously to (7.9), the inequalities (9.1), (9.2), (9.4), and (9.5) give

0 ≤ b0F (0)− b1Vπλ(π(1− β)) + (π2c5 − 4c4)λf(0)

4∑
j=1

bjN(jt, 12 )

+ f(0) (b5J(4t+ 1) + 0.851b0)

+ 1.35λf(0)
[
b5(1.8 + L1

3 ) + 1.8b0 + b5(3.2357L1 + 5.316L2 + 16.134)
]
.

(9.7)

As before we use L1 = log(4t+ 1), L2 = log log(4t+ 1). By (9.4) and (9.6),
π2c5 − 4c4 = −4/R < 0, so the sum in (9.7) can be ignored. By (9.3),
cotx− 1/x ≥ −0.3334x for 0 < x ≤ π(1− β) and this gives

Vπλ(π(1− β)) ≥ F (1− β)− 0.3334π2(1− β)f(0).

By an argument similar to that leading to (7.13), we obtain

(9.8) F (0)− b1
b0
Vπλ(π(1− β)) ≤ 0.3334π2(1− β)

b1
b0
f(0)

+
f(0)

λ

(
− cos2 θ +

0.7475b1
b0w(0)

(
1− β
λ
− 1

))
Combining (9.8) with (9.7) gives the following bound.
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Lemma 9.2. Suppose that ζ(β + it) = 0 with t ≥ 545000000 and 1− β ≤
1

160 . Let λ be a positive number satisfying (6.1). Then

(9.9)
0.16521− 0.1876( 1−β

λ − 1)

λ
≤ 5.646(1− β) +

b5
b0
J(4t+ 1)

+ 0.851 + 1.35λ
b5
b0

(3.5691L1 + 5.316L2 + 18.475).

To prove Theorem 3, first define

(9.10) c6 = c6(t) =
1

J(t) + 1.15
.

For a zero β + it of ζ with t ≥ T0, define Y (β, t) by the equation

1− β =
0.04962− 0.0196c6(t)

J(t) + Y (β, t)
.

By the Korobov-Vinogradov theorem, Y (β, t) → −∞ as t → ∞. Let
M = maxt≥T0 Y (β, t). IfM ≤ 1.15, Theorem 3 follows. Otherwise, suppose
β + it is a zero with Y (β, t) = M > 1.15. Then (6.1) holds with

(9.11) λ =
0.04962− 0.0196c6(t)

J(4t+ 1) +M

By (9.10) and (9.11),

(9.12)
1− β
λ
− 1 =

J(4t+ 1) +M

J(t) +M
− 1 =

J(4t+ 1)− J(t)

J(t) +M
≤ 0.3466

J(t) +M
.

Apply Lemma 9.2, multiplying both sides of (9.9) by 6b0/b5. By (9.12),
the left side is

≥ 0.04962− 0.0196c6(t)

λ
= J(4t+ 1) +M.

Using L1 ≤ log t + log 4 + 1
4t and L2 ≤ log log t + (log 4 + 1

4t )/ log t, we
conclude that

M ≤ 0.25562 + (1− β) [1.696 + 1.35(3.5691L1 + 5.316L2 + 18.475)]

≤ 0.25562 + (1− β) [33.812 + 4.8183 log t+ 7.1766 log log t] .

(9.13)

Also, by assumption 1 − β ≤ (0.04962 − 0.0196c6(t))c6(t). Plugging this
into (9.13), and using a short Maple computation, we find that

M ≤ 0.685 + 0.155 log log t.

In fact, M ≤ 1.7 for all t ≥ T0, but the above bound suffices for our
purposes. This completes the proof of Theorem 3.
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